Journal of neurotrauma
-
Journal of neurotrauma · Aug 2017
Development of a Prediction Model for Post-Concussive Symptoms following Mild Traumatic Brain Injury: A TRACK-TBI Pilot Study.
Post-concussive symptoms occur frequently after mild traumatic brain injury (mTBI) and may be categorized as cognitive, somatic, or emotional. We aimed to: 1) assess whether patient demographics and clinical variables predict development of each of these three symptom categories, and 2) develop a prediction model for 6-month post-concussive symptoms. Patients with mTBI (Glasgow Coma Scale score 13-15) from the prospective multi-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot study (2010-2012) who completed the Rivermead Post Concussion Symptoms Questionnaire (RPQ) at 6 months post-injury were included. ⋯ The total set of predictors explained 21% of the variance, which decreased to 14% after bootstrap validation. Demographic and clinical variables at baseline are predictive of 6-month post-concussive symptoms following mTBI; however, these variables explain less than one-fifth of the total variance in outcome. Model refinement with larger datasets, more granular variables, and objective biomarkers are needed before implementation in clinical practice.
-
Journal of neurotrauma · Aug 2017
Evaluation of Head and Brain Injury Risk Functions using Sub-Injurious Human Volunteer Data.
Risk assessment models are developed to estimate the probability of brain injury during head impact using mechanical response variables such as head kinematics and brain tissue deformation. Existing injury risk functions have been developed using different datasets based on human volunteer and scaled animal injury responses to impact. However, many of these functions have not been independently evaluated with respect to laboratory-controlled human response data. ⋯ Kinematic-based head and brain injury risk probabilities were calculated directly from the kinematic data, while strain-based risks were determined through finite element model simulation of the 335 tests. Several injury risk functions substantially over predict the likelihood of concussion and diffuse axonal injury; proposed maximum principal strain-based injury risk functions predicted nearly 80 concussions and 14 cases of severe diffuse axonal injury out of the 335 non-injurious cases. This work is an important first step in assessing the efficacy of existing brain risk functions and highlights the need for more predictive injury assessment models.
-
Journal of neurotrauma · Aug 2017
Environmental Enrichment Mitigates Deficits after Repetitive Mild TBI.
Although environmental enrichment has been shown to improve functional and histologic outcomes in pre-clinical moderate-to-severe traumatic brain injury (TBI), there are a paucity of pre-clinical data regarding enrichment strategies in the setting of repetitive mild traumatic brain injury (rmTBI). Given the vast numbers of athletes and those in the military who sustain rmTBI, the mounting evidence of the long-term and progressive sequelae of rmTBI, and the lack of targeted therapies to mitigate these sequelae, successful enrichment interventions in rmTBI could have large public health significance. Here, we evaluated enrichment strategies in an established pre-clinical rmTBI model. ⋯ Treatment with enrichment also corresponded to normal NMDAR subunit expression, decreased GluR1 phosphorylation, decreased phosphorylated CaMKII, and normal calpain expression post-rmTBI. These data suggest that enrichment strategies may improve functional outcomes and mitigate synaptic changes post-rmTBI. Given that enrichment strategies are feasible in the clinical setting, particularly for athletes and soldiers for whom the risk of repetitive injury is greatest, these data suggest that clinical trials may be warranted.
-
Journal of neurotrauma · Aug 2017
Mild and mild to moderate traumatic brain injury (TBI)-induced significant progressive and enduring multiple comorbidities.
Traumatic brain injury (TBI) can produce life-long disabilities, including anxiety, cognitive, balance, and motor deficits. The experimental model of closed head TBI (cTBI) induced by weight drop/impact acceleration is known to produce hallmark TBI injuries. However, comprehensive long-term characterization of comorbidities induced by graded mild-to- mild/moderate intensities using this experimental cTBI model has not been reported. ⋯ A natural hypothesis would pose that all disabilities would increase incrementally relative to injury severity. Surprisingly, anxiety disability progressed over time to be greater in the mildest injury. Collectively, translational implications of these observations suggest that patients with mild TBI should be evaluated longitudinally at multiple time points, and that anxiety disorder could potentially have a particularly low threshold for appearance and progressively worsen post-injury.
-
Journal of neurotrauma · Aug 2017
Increased Expression of Epileptiform Spike/Wave Discharges One Year After Mild, Moderate, or Severe Fluid Percussion Brain Injury in Rats.
In this study, we describe increased expression of cortical epileptiform spike/wave discharges (SWD) in rats one year after mild, moderate, or severe fluid percussion traumatic brain injury (fpTBI). Groups of rats consisted of animals that had received mild, moderate, or severe fpTBI, or sham operation one year earlier than electrocorticography (ECoG) recordings. In addition, we included a group of age-matched naïve animals. ⋯ SWDs were observed to a lesser extent even in sham-operated and naïve animals. The data indicate that fpTBI exacerbates expression of SWDs in the rat and that this increase may be observed at least one year after injury. As others have discussed, the spontaneous occurrence of these epileptiform events in rodents limits the use of this model for investigations of acquired epilepsy, at least of the nonconvulsive type, after TBI.