Journal of neurotrauma
-
Journal of neurotrauma · Dec 2018
Systemic and Cerebral Hemodynamic Contribution to Cognitive Performance in Spinal Cord Injury.
Cognitive deficits are prevalent in the spinal cord injury (SCI) population, and consensus suggests that concomitant traumatic brain injury or comorbid conditions are primarily responsible for these deficits. However, mounting evidence supports the possibility that systemic and cerebral hemodynamic dysfunction may contribute to the cognitive deficits reported in persons with SCI. We sought to determine the contribution of changes in blood pressure (BP) and changes in cerebral blood flow velocity (CBFv) to test performance on the Symbol Digit Modalities Test (SDMT) in persons with SCI compared with matched non-SCI controls. ⋯ Further, change in SBP accounted for a significant amount of variance in change in DFV in the total study sample (r2 = 0.090; p = 0.002). These results support previous findings of cognitive deficits in persons with SCI and indicate that inadequate systemic and cerebral hemodynamic responses to testing contribute to test performance. Therefore, clinical treatment of cognitive dysfunction in the SCI population should consider focusing on increasing systemic BP to improve CBFv, particularly in individuals with lesions above T1.
-
Journal of neurotrauma · Dec 2018
Longitudinal Magnetic Resonance Imaging Analysis and Histological Characterization after Spinal Cord Injury in Two Mouse Strains with Different Functional Recovery: Gliosis as a Key Factor.
Spinal cord injuries (SCI) are disastrous neuropathologies causing permanent disabilities. The availability of different strains of mice is valuable for studying the pathophysiological mechanisms involved in SCI. However, strain differences have a profound effect on spontaneous functional recovery after SCI. ⋯ All three modalities revealed no difference in lesion extension and volume between the two strains of mice. Importantly, histopathological analysis identified decreased gliosis and increased serotonergic axons in CX3CR1+/eGFP compared with Aldh1l1-EGFP mice following SCI. These results thus suggest that the strain-dependent improved functional recovery after SCI may be linked with reduced gliosis and increased serotonergic innervation.
-
Journal of neurotrauma · Dec 2018
Multicenter StudyElectrophysiological multimodal assessments improve outcome prediction in traumatic cervical spinal cord injury.
Outcome prediction after spinal cord injury (SCI) is essential for early counseling and orientation of the rehabilitative intervention. Moreover, prognostication of outcome is crucial to achieving meaningful stratification when conceiving clinical trials. Neurophysiological examinations are commonly employed for prognostication after SCI, but whether neurophysiology could improve the functional prognosis based on clinical predictors remains an open question. ⋯ Adding neurophysiological variables to the model, the AUC increased significantly: 0.956 (95% CI: 0.930-0.982; p = 0.019). More patients could be correctly classified by adding the electrophysiological data. Our study demonstrates that neurophysiological assessment improves the prediction of functional prognosis after traumatic cervical SCI, and suggests the use of neurophysiology to optimize patient information, rehabilitation, and discharge planning and the design of future clinical trials.
-
Journal of neurotrauma · Dec 2018
Transplantation of Neural Progenitors and V2a Interneurons after Spinal Cord Injury.
There is growing interest in the use of neural precursor cells to treat spinal cord injury (SCI). Despite extensive pre-clinical research, it remains unclear as to which donor neuron phenotypes are available for transplantation, whether the same populations exist across different sources of donor tissue (e.g., developing tissue vs. cultured cells), and whether donor cells retain their phenotype once transplanted into the hostile internal milieu of the injured adult spinal cord. In addition, while functional improvements have been reported after neural precursor transplantation post-SCI, the extent of recovery is limited and variable. ⋯ Functional diaphragm electromyography indicated recovery 1 month following treatment in transplant recipients. Animals that received donor cells enriched with V2a INs showed significantly greater functional improvement than animals that received NPCs alone. The results from this study offer insight into the neuronal phenotypes that might be effective for (re)establishing neuronal circuits in the injured adult central nervous system.
-
Journal of neurotrauma · Dec 2018
Minocycline Reduces the Severity of Autonomic Dysreflexia after Experimental Spinal Cord Injury.
Spinal cord injury (SCI) is a devastating neurological condition for which there is no effective treatment to restore neurological function. The development of new treatments for those with SCI may be hampered by the insensitivity of clinical tools to assess motor function in humans. Treatments aimed at preserving neuronal function through anti-inflammatory pathways (i.e., neuroprotection) have been a mainstay of pre-clinical SCI research for decades. ⋯ Neuroanatomical correlates (lesion area, descending sympathoexcitatory axons) were assessed, in addition to an assessment of cardiovascular control (hemodynamics, autonomic dysreflexia) and motor behavior. Here, we show that minocycline reduces lesion area, increases the number of descending sympathoexctitatory axons traversing the injury site, and ultimately reduces the severity of autonomic dysreflexia. Finally, we show that autonomic dysreflexia is a more sensitive marker of treatment stratification than motor function.