Journal of neurotrauma
-
Journal of neurotrauma · Sep 2018
Imagining the Future in Children with Severe Traumatic Brain Injury.
Imagining future events is thought to rely on recombination and integration of past episodic memory traces into future events. Future and past events contain episodic and nonepisodic details. Children with severe traumatic brain injury (TBI) were found to have impaired recall of past episodic (but not semantic) event details. ⋯ The groups did not differ on ratings of visual intensity and rehearsal. Our study has shown that children who have sustained severe TBI had impoverished recall of past, but not generation of future, events. This unexpected dissociation between past and future event construction requires further research.
-
Journal of neurotrauma · Sep 2018
A Systematic Review of Positron Emission Tomography of Tau, Amyloid Beta, and Neuroinflammation in Chronic Traumatic Encephalopathy: The Evidence To Date.
Chronic traumatic encephalopathy (CTE) is associated with pathological changes, yet detecting these changes during life has proven elusive. Positron emission tomography (PET) offers the potential for identifying such pathology. Few studies have been completed to date and their approaches and results have been diverse. ⋯ Evidence for increased uptake in cortical regions was less consistent. The evidence suggests that the field of PET imaging in those at risk for CTE remains nascent. As the field evolves to include more stringent studies, ligands for PET may prove an important tool in identifying CTE in vivo.
-
Journal of neurotrauma · Sep 2018
Comparative StudyA Comparison of Oxidative Lactate Metabolism in Traumatically Injured Brain and Control Brain.
Metabolic abnormalities occur after traumatic brain injury (TBI). Glucose is conventionally regarded as the major energy substrate, although lactate can also be an energy source. We compared 3-13C lactate metabolism in TBI with "normal" control brain and muscle, measuring 13C-glutamine enrichment to assess tricarboxylic acid (TCA) cycle metabolism. ⋯ In TBI, with 3-13C lactate perfusion, microdialysate glucose concentration increased nonsignificantly (mean +11.9%, p = 0.463), with significant increases (p = 0.028) for lactate (+174%), pyruvate (+35.8%), and lactate/pyruvate ratio (+101.8%). Microdialysate 13C-glutamine fractional enrichments (median, interquartile range) were: for C4 5.1 (0-11.1) % in TBI and 5.7 (4.6-6.8) % in control brain, for C3 0 (0-5.0) % in TBI and 0 (0-0) % in control brain, and for C2 2.9 (0-5.7) % in TBI and 1.8 (0-3.4) % in control brain. 13C-enrichments were not statistically different between TBI and control brain, showing both metabolize 3-13C lactate via TCA cycle, in contrast to muscle. Several patients with TBI exhibited 13C-glutamine enrichment above the non-TBI control range, suggesting lactate oxidative metabolism as a TBI "emergency option."
-
Journal of neurotrauma · Sep 2018
Long-Term Functional and Structural Consequences of Primary Blast Overpressure to the Eye.
Acoustic blast overpressure (ABO) injury in military personnel and civilians is often accompanied by delayed visual deficits. However, most animal model studies dealing with blast-induced visual defects have focused on short-term (≤1 month) changes. Here, we evaluated long-term (≤8 months) retinal structure and function deficits in rats with ABO injury. ⋯ Age, but not blast exposure, altered Y-maze outcomes. GFAP was greatly increased in blast-exposed retinas. ABO exposure resulted in visual and retinal changes that persisted up to 8 months post-blast, mimicking some of the visual deficits observed in human blast-exposed patients, thereby making this a useful model to study mechanisms of injury and potential treatments.
-
Journal of neurotrauma · Sep 2018
Circular Ribonucleic Acid Expression Alteration in Exosomes from the Brain Extracellular Space after Traumatic Brain Injury in Mice.
Traumatic brain injury (TBI) has high morbidity and mortality rates. The mechanisms underlying TBI are unclear and may include the change in biological material in exosomes. Circular ribonucleic acids (circRNAs) are enriched and stable in exosomes, which can function as microRNA (miRNA) sponges to regulate gene expression levels. ⋯ The most highly correlated pathways that we identified were involved primarily with glutamatergic synapse and the cyclic guanosine monophosphate-protein kinase G signaling pathway. The circRNA-miRNA network predicted the potential roles of these differentially expressed circRNAs and the interaction of circRNAs with miRNAs. Our study broadens the horizon of research on gene regulation in exosomes from the brain extracellular space after TBI and provides novel targets for further research on both the molecular mechanisms of TBI and the potential intervention therapy targets.