Journal of neurotrauma
-
Journal of neurotrauma · Nov 2019
Case ReportsPersistent Disruption of Brain Connectivity After Sports-Related Concussion in a Female Athlete.
Structural and functional connectivity (FC) after sports-related concussion (SRC) may remain altered in adolescent athletes despite symptom resolution. Little is known, however, about how alterations in structural connectivity and FC co-present in female athletes whose symptom recovery tends to be prolonged. Despite resolution of symptoms, one month after her second SRC, an 18-year-old female athlete had decreased structural connectivity in the corpus callosum and cingulum, with altered FC near those regions, compared with other SRC and orthopedically injured athletes. Findings show persistent effects of SRC on advanced brain imaging and the possibility of greater vulnerability of white matter tracts in females.
-
Journal of neurotrauma · Nov 2019
Observational StudyFavorable Functional Recovery in Severe Traumatic Brain Injury Survivors Beyond Six Months.
Favorable long-term functional outcomes after severe traumatic brain injury (TBI) may be underestimated. We analyzed 24-month functional outcomes from a consecutive series of severe TBI survivors. A prospective, observational database of severe TBI survivors from a single institution was analyzed. ⋯ Severe TBI survivors demonstrated significant improvement in functional outcomes from 3 to 24 months after injury. At 2 years, three fourths of survivors had a favorable outcome. Long-term prognosis in severe TBI is better than broadly appreciated.
-
Journal of neurotrauma · Nov 2019
Low Field Magnetic Stimulation Restores Cognitive and Motor Functions in the Mouse Model of Repeated Traumatic Brain Injury: Role of Cellular Prion Protein.
Traumatic brain injury (TBI)/concussion is a growing epidemic throughout the world. Memory and neurobehavioral dysfunctions are among the sequelae of TBI. Dislodgement of cellular prion protein (PrPc) and disruption of circadian rhythm have been linked to TBI. ⋯ In LFMS-treated mice, a decrease in proteins related to circadian rhythm were observed, compared with sham-treated TBI mice. The results obtained from the study demonstrated the neuroprotective effect of LFMS, which may be through regulating PrPc and/or proteins related to circadian rhythm. Thus, the present study suggests that LFMS may improve the subject's neurological condition following TBI.
-
Journal of neurotrauma · Nov 2019
Exposure to Blast Overpressure Impairs Cerebral Microvascular Responses and Alters Vascular and Astrocytic Structure.
Exposure to blast overpressure may result in cerebrovascular impairment, including cerebral vasospasm. The mechanisms contributing to this vascular response are unclear. The aim of this study was to evaluate the relationship between blast and functional alterations of the cerebral microcirculation and to investigate potential underlying changes in vascular microstructure. ⋯ A reduction in vascular smooth muscle contractile proteins consistent with vascular wall proliferation was observed, as well as delayed reduction in nitric oxide synthase and increase in endothelin-1 B receptors, mainly in astrocytes. Collectively, the data show that exposure to blast results in delayed and prolonged alterations in cerebrovascular reactivity that are associated with changes in the microarchitecture of the vessel wall and astrocytes. These changes may contribute to long-term pathologies involving dysfunction of the neurovascular unit, including cerebral vasospasm.
-
Journal of neurotrauma · Nov 2019
Traumatic Brain Injury Temporal Proteome Guides KCC2-Targeted Therapy.
Advancing therapeutics for traumatic brain injury (TBI) remains a challenge, necessitating testable targets with interventions appropriately timed to intercede on evolving secondary insults. Neuroproteomics provides a global molecular approach to deduce the complex post-translational processes that underlie secondary events after TBI. Yet method advancement has outpaced approaches to interrogate neuroproteomic complexity, in particular when addressing the well-recognized temporal evolution of TBI pathobiology. ⋯ Guided by post-translational processing revealed one-day after insult to precede KCC2 protein loss a day after, CLP290 was highly effective at restoring up to 70% of lost KCC2 localization, which was significantly correlated with recovery of sham-level function in assessed somatosensory behavioral tasks. The timing of administration was important, with no significant improvement observed if given earlier, one-hour after insult, or later when KCC2 protein decline begins. Results portend importance for a detailed post-translational characterization when devising TBI treatments, and support the therapeutic promise of KCC2-targeted CLP290 intervention for positive functional recovery after brain injury.