Journal of neurotrauma
-
Journal of neurotrauma · Nov 2019
Development of a novel gait analysis tool measuring center of pressure for evaluation of canine chronic thoracolumbar spinal cord injury.
Gait evaluation after spinal cord injury (SCI) is an important component of determining functional status. Analysis of center of pressure (COP) provides a dynamic reflection of global locomotion and postural control and has been used to quantify various gait abnormalities. We hypothesized that COP variability would be greater for SCI versus normal dogs and that COP would be able to differentiate varying injury severity. ⋯ Support percentage moderately correlated with SS (p = 0.019; R2 = 0.47). COP analysis and body weight support measurements offer information about post-injury locomotion. Further development is needed before consideration as an outcome measure to complement validated gait analysis methods in dogs with SCI.
-
Journal of neurotrauma · Nov 2019
Modulation of serotonin and adenosine 2A receptors on intermittent hypoxia-induced respiratory recovery following mid-cervical contusion in the rat.
The present study was designed to evaluate the therapeutic effectiveness and mechanism of acute intermittent hypoxia on respiratory function at distinct injury stages following mid-cervical spinal contusion. In the first experiment, adult male rats received laminectomy or unilateral contusion at 3rd-4th cervical spinal cord at 9 weeks of age. The ventilatory behavior in response to mild acute intermittent hypercapnic-hypoxia (10 episodes of 5 min of hypoxia [10% O2, 4% CO2, 86% N2] with 5 min of normoxia intervals) was measured by whole-body plethysmography at the acute (∼3 days), subchronic (∼2 weeks), and chronic (∼8 weeks) injury stages. ⋯ The results demonstrated that acute intermittent hypercapnic-hypoxia-induced enhancement of minute ventilation was attenuated by a serotonin receptor antagonist (methysergide) but enhanced by an adenosine 2A receptor antagonist (KW6002) at the subchronic and chronic injury stages. These results suggested that acute intermittent hypercapnic-hypoxia can induce respiratory recovery from acute to chronic injury stages. The therapeutic effectiveness of intermittent hypercapnic-hypoxia is dampened by the inhibition of serotonin receptors, but a blockade of adenosine 2A receptors enhanced respiratory recovery induced by intermittent hypercapnic-hypoxia.
-
Journal of neurotrauma · Nov 2019
Association of pneumonia, wound infection and sepsis with clinical outcomes after acute traumatic spinal cord injury.
Pneumonia, wound infections, and sepsis (PWS) are the leading causes of acute mortality after traumatic spinal cord injury (SCI). However, the impact of PWS on neurological and functional outcomes is largely unknown. The present study analyzed participants from the prospective North American Clinical Trials Network (NACTN) registry and the Surgical Timing in Acute SCI Study (STASCIS) for the association between PWS and functional outcome (assessed as Spinal Cord Independence Measure subscores for respiration and indoor ambulation) at 6 months post-injury. ⋯ Dominance analysis showed injury level, baseline AIS grade, and subject pre-morbid medical status collectively accounted for 77.7% of the predicted variance of PWS. Regression analysis indicated subjects with PWS demonstrated higher odds for respiratory (odds ratio [OR] 3.91, 95% confidence interval [CI]: 1.42-10.79) and ambulatory (OR 3.94, 95% CI: 1.50-10.38) support at 6 month follow-up in adjusted analysis. This study has shown an association between PWS occurring during acute admission and poorer functional outcomes following SCI.
-
Journal of neurotrauma · Nov 2019
Overview of Systematic Reviews of Aerobic Fitness and Muscle Strength Training after Spinal Cord Injury.
The number of systematic reviews on the effects of exercise on aerobic fitness and muscle strength in people with spinal cord injury (SCI) has recently increased. However, the results of some of these reviews are inconclusive or inconsistent. To strengthen recommendations, this overview was undertaken to assimilate evidence about the effectiveness of different types of physical activities, exercises, and therapeutic interventions for improving aerobic fitness and muscle strength in people with SCI. ⋯ Overall, 16 systematic reviews were included (aerobic fitness, n = 10; muscle strength, n = 15). For all 16 reviews, the quality of evidence was rated as "critically low." Despite low evidence, this overview strengthens the existing guidelines for people with SCI, providing specific advice on exercise domains (types, intensities, frequency, and duration) for improving aerobic fitness and muscle strength. The evidence from this overview suggests that ergometry training with/without additional therapeutic interventions (20 min, moderate to vigorous intensity, twice weekly for 6 weeks) may improve aerobic fitness; similarly, resistance training with/without additional therapeutic interventions (three sets of 8-10 repetitions, moderate to vigorous intensity, twice weekly for 6 weeks) may improve muscle strength.
-
Journal of neurotrauma · Nov 2019
Optical Assessment of Spinal Cord Tissue Oxygenation Using a Miniaturized Near Infrared Spectroscopy Sensor.
Despite advances in the treatment of acute spinal cord injury (SCI), measures to mitigate permanent neurological deficits in affected patients are limited. Immediate post-trauma hemodynamic management of patients, to maintain blood supply and improve oxygenation to the injured spinal cord, is currently one aspect of critical care which clinicians can utilize to improve neurological outcomes. However, without a way to monitor the response of spinal cord hemodynamics and oxygenation in real time, optimizing hemodynamic management is challenging and limited in scope. ⋯ NIRS parameters of tissue oxygenation were highly correlated with intraparenchymal measures of tissue oxygenation. In particular, during periods of hypoxia and MAP alterations, changes of NIRS-derived spinal cord oxygenated hemoglobin and tissue oxygenation percentage corresponded well with the changes in spinal cord oxygen partial pressures measured by the intraparenchymal sensor. Our data confirm that during hypoxic episodes and as changes occur in the MAP, non-invasive NIRS can detect and measure real-time changes in spinal cord oxygenation with a high degree of sensitivity and specificity.