Journal of neurotrauma
-
Journal of neurotrauma · Mar 2019
Randomized Controlled TrialImpact of Low-Level Blast Exposure on Brain Function after a One-Day Tactile Training and the Ameliorating Effect of a Jugular Vein Compression Neck Collar Device.
Special Weapons and Tactics (SWAT) personnel who conduct breacher exercises are at risk for blast-related head trauma. We aimed to investigate the potential impact of low-level blast exposure during breacher training on the neural functioning of working memory and auditory network connectivity. We also aimed to evaluate the effects of a jugular vein compression collar, designed to internally mitigate slosh energy absorption, preserving neural functioning and connectivity, following blast exposure. ⋯ The elevation in fMRI activation in the non-collar group was found to correlate significantly (n = 7, r = 0.943, p = 0.001) with average peak impulse amplitude experienced during the training. In the resting-state fMRI analysis, significant pre- to post-training increase in connectivity between the auditory network and two discrete regions (left middle frontal gyrus and left superior lateral occipital/angular gyri) was found in the non-collar group, while no change was observed in the collar group. These data provided initial evidence of the impact of low-level blast on working memory and auditory network connectivity as well as the protective effect of collar on brain function following blast exposure, and is congruent with previous collar findings in sport-related traumatic brain injury.
-
Journal of neurotrauma · Mar 2019
Multicenter StudyPredicting Psychological Distress after Pediatric Concussion.
A significant proportion of children and adolescents report psychological distress following concussion, but little is known about the predictors of these problems. The purpose of this study was to examine predictive factors of psychological distress following pediatric concussion. It was hypothesized that the presence of pre-injury psychological distress would be the strongest predictor of psychological distress post-concussion, with other demographic and acute injury factors adding incrementally to prediction. ⋯ A pre-injury diagnosis of anxiety and acutely forgetting recent information were significant predictors of psychological distress at 4 weeks, whereas worse acute orientation assessment in the ED predicted psychological distress at 12 weeks. Nearly one of four youth experienced psychological distress after concussion. Clinicians in acute care settings should screen for the factors (pre-injury anxiety, acute mental status) associated with post-injury psychological distress and consider proactively referring patients for further assistance.
-
Journal of neurotrauma · Mar 2019
White Matter Correlates of Mild Traumatic Brain Injuries in Women Subjected to Intimate-Partner Violence: A Preliminary Study.
A large proportion (range of 44-75%) of women who experience intimate-partner violence (IPV) have been shown to sustain repetitive mild traumatic brain injuries (mTBIs) from their abusers. Further, despite requests for research on TBI-related health outcomes, there are currently only a handful of studies addressing this issue and only one prior imaging study that has investigated the neural correlates of IPV-related TBIs. In response, we examined specific regions of white matter microstructure in 20 women with histories of IPV. ⋯ We report a negative correlation between the brain injury score and FA in regions of the posterior and superior corona radiata. We failed to find an association between our cognitive measures and FA in these regions, but the interpretation of these results remains inconclusive due to possible power issues. Overall, these data build upon the small but growing literature demonstrating potential consequences of mTBIs for women experiencing IPV, and further underscore the urgent need for larger and more comprehensive studies in this area.
-
Journal of neurotrauma · Mar 2019
Blast Exposure Impairs Sensory Gating: Evidence from Measures of Acoustic Startle and Auditory Event-Related Potentials.
Many military service members and veterans who have been exposed to high-intensity blast waves experience traumatic brain injury (TBI), resulting in chronic auditory deficits despite normal hearing sensitivity. The current study sought to examine the neurological cause of this chronic dysfunction by testing the hypothesis that blast exposure leads to impaired filtering of sensory information at brainstem and early cortical levels. Groups of blast-exposed and non-blast-exposed participants completed self-report measures of auditory and neurobehavioral status, auditory perceptual tasks involving degraded and competing speech stimuli, and physiological measures of sensory gating, including pre-pulse inhibition and habituation of the acoustic startle reflex and electrophysiological assessment of a paired-click sensory gating paradigm. ⋯ Multiple linear regression analyses revealed that poorer sensory gating at the cortical level was primarily influenced by a diagnosis of TBI, whereas reduced habituation was primarily influenced by a diagnosis of post-traumatic stress disorder. A statistical model was created including cortical sensory gating and habituation to acoustic startle, which strongly predicted performance on a degraded speech task. These results support the hypothesis that blast exposure impairs central auditory processing via impairment of neural mechanisms underlying habituation and sensory gating.
-
Journal of neurotrauma · Mar 2019
Cortical Neuromodulation of Remote Regions after Experimental Traumatic Brain Injury Normalizes Forelimb Function but is Temporally Dependent.
Traumatic brain injury (TBI) results in well-known, significant alterations in structural and functional connectivity. Although this is especially likely to occur in areas of pathology, deficits in function to and from remotely connected brain areas, or diaschisis, also occur as a consequence to local deficits. As a result, consideration of the network wiring of the brain may be required to design the most efficacious rehabilitation therapy to target specific functional networks to improve outcome. ⋯ However, by conducting temporary contralesional cortex silencing in the same injured rats at 4 weeks post-injury, injury-affected limb function either remains unaffected and deficient or is worsened, indicating that circuit modifications are more permanently controlled or at least influenced by the contralesional cortex at extended post-injury times. We provide functional magnetic resonance imaging (MRI) evidence of the neuromodulatory effect of muscimol on forelimb-evoked function in the cortex. We discuss these findings in light of known changes in cortical connectivity and excitability that occur in this injury model, and postulate a mechanism to explain these findings.