Journal of neurotrauma
-
Journal of neurotrauma · May 2019
Randomized Controlled TrialSelf-Assisted Standing Enabled by Non-Invasive Spinal Stimulation after Spinal Cord Injury.
Neuromodulation of spinal networks can improve motor control after spinal cord injury (SCI). The objectives of this study were to (1) determine whether individuals with chronic paralysis can stand with the aid of non-invasive electrical spinal stimulation with their knees and hips extended without trainer assistance, and (2) investigate whether postural control can be further improved following repeated sessions of stand training. Using a double-blind, balanced, within-subject cross-over, and sham-controlled study design, 15 individuals with SCI of various severity received transcutaneous electrical spinal stimulation to regain self-assisted standing. ⋯ Quality of balance control was practice-dependent, and improved with subsequent training. During self-initiated body-weight displacements in standing enabled by spinal stimulation, high levels of leg muscle activity emerged, and depended on the amount of muscle loading. Our findings indicate that the lumbosacral spinal networks can be modulated transcutaneously using electrical spinal stimulation to facilitate self-assisted standing after chronic motor and sensory complete paralysis.
-
Journal of neurotrauma · May 2019
Meta AnalysisProgression of Neuropathic Pain after Acute Spinal Cord Injury: A Meta-Analysis and Framework for Clinical Trials.
The translation of therapeutic interventions to humans with spinal cord injury with the goal of promoting growth and repair in the central nervous system could, inadvertently, drive mechanisms associated with the development of neuropathic pain. A framework is needed to evaluate the probability that a therapeutic intervention for acute spinal cord injury modifies the progression of neuropathic pain. We analyzed a large, longitudinal dataset from the European Multi-Center Study about Spinal Cord Injury (EMSCI) and compared these observations with a previously published Swedish/Danish cohort. ⋯ Characteristics that were significantly associated with the progression of pain included age and sensory and motor preservation. We provide historical benchmarks for estimating the progression of neuropathic pain during the first year after acute SCI. This information will be useful for comparison and evaluating safety during early phase acute spinal cord injury trials.
-
Journal of neurotrauma · May 2019
Multi-Potent Adult Progenitor Cells, but not Tissue Inhibitor of Matrix Metalloproteinase-3, Increase Tissue Sparing and Reduce Urological Complications following Spinal Cord Injury.
Following spinal cord injury (SCI), inflammation amplifies damage beyond the initial insult, providing an opportunity for targeted treatments. An ideal protective therapy would reduce both edema within the lesion area and the activation/infiltration of detrimental immune cells. Previous investigations demonstrated the efficacy of intravenous injection of multipotent adult progenitor cells (MAPC®) to modulate immune response following SCI, leading to significant improvements in tissue sparing, locomotor and urological functions. ⋯ The results suggest that intravenous delivery of MAPC cell therapy 1 day following acute SCI significantly improves tissue sparing and impacts functional recovery. TIMP3 treatment provided no significant benefit, and further, when co-administered with MAPC cells, it abrogated the therapeutic effects of MAPC cell therapy. Importantly, this study demonstrated for the first time that acute treatment of SCI with MAPC cells can significantly reduce the incidence of urinary tract infection (UTI) and the use of antibiotics for UTI treatment.
-
Journal of neurotrauma · May 2019
Predictors of response to 4-aminopyridine in chronic canine spinal cord injury.
4-Aminopyridine (4AP), a potassium channel antagonist, can improve hindlimb motor function in dogs with chronic thoracolumbar spinal cord injury (SCI); however, individual response is variable. We hypothesized that injury characteristics would differ between dogs that do and do not respond to 4AP. Our objective was to compare clinical, electrodiagnostic, gait, and imaging variables between dogs that do and do not respond to 4AP, to identify predictors of response. ⋯ MEPs were more common post-4AP than pre-4AP (10 vs. 6 dogs) and 4AP decreased H-reflex threshold and increased spasticity in responders. 4-AP impacts central conduction and motor neuron pool excitability in dogs with chronic SCI. Severity of spasticity and H-reflex threshold might allow prediction of response. Further exploration of electrodiagnostic and imaging characteristics might elucidate additional factors contributing to response or non-response.