Journal of neurotrauma
-
Journal of neurotrauma · Jun 2019
The Role of CB2 Receptor in the Recovery of Mice after Traumatic Brain Injury.
Cannabis is one of the most widely used plant drugs in the world today. In spite of the large number of scientific reports on medical marijuana, there still exists much controversy surrounding its use and the potential for abuse due to the undesirable psychotropic effects. However, recent developments in medicinal chemistry of novel non-psychoactive synthetic cannabinoids have indicated that it is possible to separate some of the therapeutic effects from the psychoactivity. ⋯ HU-910 and HU-914 were selected in the present study to evaluate their potential effect in the pathophysiology of traumatic brain injury (TBI). In mice and rats subjected to closed-head injury and treated with these novel compounds, we showed enhanced neurobehavioral recovery, inhibition of tumor necrosis factor α production, increased synaptogenesis, and partial recovery of the cortical spinal tract. We propose these CB2 agonists as potential drugs for development of novel therapeutic modality to TBI.
-
Journal of neurotrauma · Jun 2019
Age moderates the effects of traumatic brain injury on beta-amyloid plaque load in APP/PS1 mice.
Traumatic brain injury (TBI) has been identified as a risk factor for Alzheimer's disease (AD). However, how such neural damage contributes to AD pathology remains unclear; specifically, the relationship between the timing of a TBI relative to aging and the onset of AD pathology is not known. In this study, we have examined the effect of TBI on subsequent beta-amyloid (Aβ) deposition in APP/PS1 (APPSWE/PSEN1dE9) transgenic mice either before (3 months of age) or after the onset (6 months of age) of plaque pathology. ⋯ No Aβ plaques were present in any WT mice across these conditions. Glial fibrillary acidic protein immunolabeling of astrocytes and ionized calcium-binding adapter molecule 1 immunolabeling of microglial/macrophages was not significantly different (p < 0.05) in injured animals compared to sham mice, or APP/PS1 mice compared to WT mice. The current data indicate that TBI may have differential effects on Aβ plaque deposition depending on the age and the stage of amyloidosis at the time of injury.