Journal of neurotrauma
-
Journal of neurotrauma · Dec 2020
Multicenter Study Observational StudyExosomal MicroRNAs in Military Persons with Mild Traumatic Brain Injury: Preliminary Results from a Chronic Effects of Neurotrauma Consortium (CENC) Biomarker Discovery Project.
Chronic symptoms after mild traumatic brain injury (mTBI) are common among veterans and service members, and represent a significant source of morbidity, with those who sustain multiple mTBIs at greatest risk. Exosomal micro-RNAs (miRNAs), mediators of intercellular communication, may be involved in chronic TBI symptom persistence. Exosomal miRNA (exomiR) was extracted from 153 participants enrolled in the Chronic Effect of Neurotrauma Consortium (CENC) longitudinal study (no TBI, n = 35; ≥ 3 mTBIs (rTBI), n = 45; 1-2 mTBIs, n = 73). ⋯ TBI history and neurobehavioral symptom survey scores negatively and significantly correlated with hsa-miR-103a-3p expression. Participants with remote mTBI have distinct exomiR profiles, which are significantly linked to inflammatory and neuronal repair pathways. These profiles suggest that analysis of exosomal miRNA expression may provide novel insights into the underlying pathobiology of chronic TBI symptom persistence.
-
Journal of neurotrauma · Dec 2020
ReviewBeyond binary: the influence of sex and gender on outcome after traumatic brain injury.
Traumatic brain injury (TBI) affects millions of individuals each year and is a leading cause of death and disability worldwide. TBI is heterogeneous and outcome is influenced by a combination of factors that include injury location, severity, genetics, and environmental factors. More recently, sex as a biological variable has been incorporated into TBI research, although there is conflicting literature regarding clinical outcomes in males versus females after TBI. ⋯ Social constructs regarding gender impact an individual's vulnerability to violence and consequent TBI, including the successful reintegration to society after TBI. We call for incorporation of gender beyond the binary in TBI education, research, and clinical care. Precision medicine necessarily must progress beyond the binary to treat individuals after TBI.
-
Journal of neurotrauma · Dec 2020
Observational StudyPoint-of-Care Platform Blood Biomarker Testing of GFAP versus S100B for Prediction of Traumatic Brain Injuries: a TRACK-TBI study.
Glial fibrillary acidic protein (GFAP) is cleared by the Food and Drug Administration (FDA) to determine need for head computed tomography (CT) within 12 h after mild traumatic brain injury (TBI) (Glasgow Coma Score [GCS] 13-15); S100 calcium-binding protein B (S100B) serves this function in Europe. This phase 1 biomarker cohort analysis of the multi-center, observational Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study compares GFAP's diagnostic performance, measured on a rapid point-of-care platform, against protein S100B to predict intracranial abnormalities on CT within 24 h post-injury across the spectrum of TBI (GCS 3-15). Head CT scan performed in TBI subjects and blood was collected for all consenting subjects presenting to 18 United States level 1 trauma centers. ⋯ Receiver operating characteristic curves were generated for prediction of intracranial injury on admission CT scan; area under the curve (AUC) for GFAP was significantly higher than for S100B in the same cohort (GFAP AUC - 0.85, 95% confidence interval [CI] 0.83-0.87; S100B AUC - 0.67, 95% CI 0.64-0.70; p 0.001). GFAP, measured on a point-of-care platform prototype assay, has high discriminative ability to predict intracranial abnormalities on CT scan in patients with TBI across the full injury spectrum of GCS 3-15 through 24 h post-injury. GFAP substantially outperforms S100B.
-
Journal of neurotrauma · Dec 2020
Non-invasive estimation of intracranial pressure by diffuse optics - a proof-of-concept study.
Intracranial pressure (ICP) is an important parameter to monitor in several neuropathologies. However, because current clinically accepted methods are invasive, its monitoring is limited to patients in critical conditions. On the other hand, there are other less critical conditions for which ICP monitoring could still be useful; therefore, there is a need to develop non-invasive methods. ⋯ In both diverse cohorts, the non-invasive estimation of ICP was achieved with an accuracy of <4 mm Hg and a negligible small bias. Further, we have achieved a good correlation (Pearson's correlation coefficient >0.9) and good concordance (Lin's concordance correlation coefficient >0.9) in comparison with standard clinical, invasive ICP monitoring. This preliminary work paves the way for further investigations of this tool for the non-invasive, bedside assessment of ICP.
-
Journal of neurotrauma · Dec 2020
Executive Dysfunction Following a Sport-Related Concussion is Independent of Task-Based Symptom Burden.
A sport-related concussion (SRC) results in short- and long-term deficits in oculomotor control; however, it is unclear whether this change reflects executive dysfunction and/or a performance decrement caused by an increase in task-based symptom burden. Here, individuals with a SRC - and age- and sex-matched controls - completed an antisaccade task (i.e., saccade mirror-symmetrical to a target) during the early (initial assessment ≤12 days) and later (follow-up assessment <30 days) stages of recovery. Antisaccades were used because they require top-down executive control and exhibit performance decrements following an SRC. ⋯ SCAT-5 symptom severity scores did not vary from the pre- to post-oculomotor evaluation for either initial or follow-up assessments. Accordingly, an SRC imparts a persistent executive dysfunction to oculomotor planning independent of a task-based increase in symptom burden. These findings evince that antisaccades serve as an effective tool to identify subtle executive deficits during the early and later stages of SRC recovery.