Journal of neurotrauma
-
Journal of neurotrauma · Dec 2020
The prevalence and stability of sleep-wake disturbance and fatigue throughout the first year after mild traumatic brain injury.
In this prospective, longitudinal study, we aimed to determine the prevalence and stability of sleep-wake disturbance (SWD) and fatigue in a large representative sample of patients (Trondheim mild traumatic brain injury [mTBI] follow-up study). We included 378 patients with mTBI (age 16-60), 82 matched trauma controls with orthopedic injuries, and 83 matched community controls. Increased sleep need, poor sleep quality, excessive daytime sleepiness, and fatigue were assessed at 2 weeks, 3 months, and 12 months after injury. ⋯ In patients with mTBI who experienced SWDs and fatigue 2 weeks after injury, around half still had problems at 3 months and approximately one third at 12 months. Interestingly, we observed limited overlap between the different symptom measures; a large number of patients reported one specific problem with SWD or fatigue rather than several problems. In conclusion, our results provide strong evidence that mTBI contributes significantly to the development and maintenance of SWDs and fatigue.
-
Journal of neurotrauma · Dec 2020
Expression of Angiopoietins and Angiogenic Signaling Pathway Molecules in Chronic Subdural Hematomas.
Chronic subdural hematoma (CSDH) is an angiogenic disease that is involved with many inflammatory mediators. Tie2 is predominantly expressed in the embryonic endothelium and plays an important role in the maturation and stabilization of the vasculature. Angiopoietin (Ang)1 and Ang2 are well-known ligands of the Tie2 receptor. ⋯ In addition, Tie2, Akt, and mTOR were localized in the endothelial cells of vessels in the CSDH outer membrane. Our data suggest that Ang2, although not Ang1, in CSDH fluid promotes angiogenesis in endothelial cells through the Tie2 receptor. The Ang2/Tie2 signaling pathway might therefore be a useful therapeutic target for treating the growth of intractable CSDH.
-
Journal of neurotrauma · Dec 2020
Early increase in cortical T2 relaxation is a prognostic biomarker for the evolution of severe cortical damage, but not for epileptogenesis, after experimental traumatic brain injury.
Prognostic biomarkers for post-injury outcome are necessary for the development of neuroprotective and antiepileptogenic treatments for traumatic brain injury (TBI). We hypothesized that T2 relaxation magnetic resonance imaging (MRI) predicts the progression of perilesional cortical pathology and epileptogenesis. The EPITARGET animal cohort used for MRI analysis included 120 adult male Sprague-Dawley rats with TBI induced by lateral fluid-percussion injury and 24 sham-operated controls. ⋯ Logistic regression analysis, however, showed that the different severities of T2 lesion volumes at days 2, 7, and 21 post-TBI did not explain the development of epilepsy (χ2(18,95) = 18.4; p = 0.427). In addition, the location of the T2 abnormality within the cortex did not correlate with epileptogenesis. A single measurement of T2 relaxation MRI in the acute post-TBI phase is useful for identifying post-TBI subjects at highest risk of developing large cortical lesions, and thus, in the greatest need of neuroprotective therapies after TBI, but not the development of post-traumatic epilepsy.
-
Journal of neurotrauma · Dec 2020
Sodium cromoglycate decreases sensorimotor impairment and hippocampal alterations induced by severe traumatic brain injury in rats.
Severe traumatic brain injury (TBI) results in significant functional disturbances in the hippocampus. Studies support that sodium cromoglycate (CG) induces neuroprotective effects. This study focused on investigating the effects of post-TBI subchronic administration of CG on hippocampal hyperexcitability and damage as well as on sensorimotor impairment in rats. ⋯ The TBI+CG group presented hippocampal volume reduction (12.7%, p = 0.94) and damage (0.10 ± 0.03 mm3, p > 0.99) similar to the TBI+SS group. However, their hippocampal neuronal preservation was similar to that of the Sham+SS group. These results indicate that CG represents an appropriate and novel pharmacological strategy to reduce the long-term sensorimotor impairment and hippocampal damage and hyperexcitability that result as consequences of severe TBI.
-
Journal of neurotrauma · Dec 2020
Multicenter Study Observational StudyExosomal MicroRNAs in Military Persons with Mild Traumatic Brain Injury: Preliminary Results from a Chronic Effects of Neurotrauma Consortium (CENC) Biomarker Discovery Project.
Chronic symptoms after mild traumatic brain injury (mTBI) are common among veterans and service members, and represent a significant source of morbidity, with those who sustain multiple mTBIs at greatest risk. Exosomal micro-RNAs (miRNAs), mediators of intercellular communication, may be involved in chronic TBI symptom persistence. Exosomal miRNA (exomiR) was extracted from 153 participants enrolled in the Chronic Effect of Neurotrauma Consortium (CENC) longitudinal study (no TBI, n = 35; ≥ 3 mTBIs (rTBI), n = 45; 1-2 mTBIs, n = 73). ⋯ TBI history and neurobehavioral symptom survey scores negatively and significantly correlated with hsa-miR-103a-3p expression. Participants with remote mTBI have distinct exomiR profiles, which are significantly linked to inflammatory and neuronal repair pathways. These profiles suggest that analysis of exosomal miRNA expression may provide novel insights into the underlying pathobiology of chronic TBI symptom persistence.