Journal of neurotrauma
-
Journal of neurotrauma · Sep 2020
Multicenter StudyBrain Tissue Oxygen and Cerebrovascular Reactivity in Traumatic Brain Injury: A CENTER-TBI Exploratory Analysis of Insult Burden.
Pressure reactivity index (PRx) and brain tissue oxygen (PbtO2) are associated with outcome in traumatic brain injury (TBI). This study explores the relationship between PRx and PbtO2 in adult moderate/severe TBI. Using the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) high resolution intensive care unit (ICU) sub-study cohort, we evaluated those patients with archived high-frequency digital intraparenchymal intracranial pressure (ICP) and PbtO2 monitoring data of, a minimum of 6 h in duration, and the presence of a 6 month Glasgow Outcome Scale -Extended (GOSE) score. ⋯ Extreme impairment in cerebrovascular reactivity is seen during concurrent episodes of elevated ICP and low PbtO2. However, the majority of the deranged cerebral physiology seen during the acute ICU phase is impairment in cerebrovascular reactivity, with most impairment occurring in the presence of normal PbtO2 levels. Measures of cerebrovascular reactivity appear to display the most consistent associations with global outcome in TBI, compared with ICP and PbtO2.
-
Journal of neurotrauma · Sep 2020
Study design features associated with patient attrition in studies of traumatic brain injury - a systematic review.
Loss to follow-up or patient attrition is common in longitudinal studies of traumatic brain injury (TBI). Lack of understanding exists between the relation of study design and patient attrition. This review aimed to identify features of study design that are associated with attrition. ⋯ Conversely, two features were associated with a reduction in attrition: recruitment in an acute care setting defined as the ward or intensive care unit (OR: 0.58, 95% CI: 0.47-0.72) and a greater duration of time between injury and follow-up (OR: 0.93, 95% CI: 0.88-0.99). This review highlights design features that are associated with attrition and could be considered when planning for patient retention. Further work is needed to establish the mechanisms between the observed associations and potential remedies.
-
Journal of neurotrauma · Sep 2020
Repetitive Mild Traumatic Brain Injury and Transcription Factor Modulation.
The worldwide incidence of traumatic brain injury (TBI) is ∼0.5% per year and the frequency is significantly higher among military personnel and athletes. Repetitive TBIs are associated with military and athletic activities, and typically involve more severe consequences. The majority of TBIs are mild; however, these still can result in long-term cognitive deficits, and there is currently no effective treatment. tert-Butylhydroquinone (tBHQ) and pioglitazone can activate the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and peroxisome proliferator-activated receptor-gamma (PPAR-γ) transcription factors, respectively, and each has been shown to be neuroprotective in various model systems. ⋯ We found that memory performance was significantly reduced by the injuries, unless the TBIs were followed by the tBHQ and pioglitazone administrations. Certain genes; for example, growth hormone and osteopontin, were downregulated by the injury, and this was reversed by the treatment, whereas other genes; for example, a tumor necrosis factor receptor, were upregulated by the injury and restored if the post-injury treatment was administered. Analysis of gene expression levels affected by the injury and/or the treatment point to potential mechanisms that could be exploited therapeutically.
-
Journal of neurotrauma · Sep 2020
Comparative StudyPost-Acute Cortical Thickness in Children with Mild Traumatic Brain Injury versus Orthopedic Injury.
Studies of brain morphometry may illuminate the effects of pediatric mild traumatic brain injury (TBI; e.g., concussion). However, no published studies have examined cortical thickness in the early injury phases of pediatric mild TBI using an appropriate comparison group. The current study used an automated approach (i.e., FreeSurfer) to determine whether cortical thickness differed in children following a mild TBI or a mild orthopedic injury (OI), and to examine whether post-acute cortical thickness predicted post-acute and chronic post-concussive symptoms (PCS). ⋯ Right frontal thickness was positively related to post-acute PCS in both groups. Right cingulum thickness predicted chronic PCS in the OI group only. Results highlight the complexity of predicting outcomes of pediatric mild TBI from post-acute neuroimaging biomarkers.
-
Journal of neurotrauma · Sep 2020
Neurons in Subcortical Oculomotor Regions are Vulnerable to Plasma Membrane Damage after Repetitive Diffuse Traumatic Brain Injury in Swine.
Oculomotor deficits, such as insufficiencies in accommodation, convergence, and saccades, are common following traumatic brain injury (TBI). Previous studies in patients with mild TBI attributed these deficits to insufficient activation of subcortical oculomotor nuclei, although the exact mechanism is unknown. A possible cause for neuronal dysfunction in these regions is biomechanically induced plasma membrane permeability. ⋯ Many permeabilized cells lost neuron-specific nuclear protein reactivity, although no neuronal loss occurred acutely after injury. Microglia contacted and appeared to begin phagocytosing permeabilized neurons in repetitively injured animals. These pathologies within oculomotor areas may mediate transient dysfunction and/or degeneration that may contribute to oculomotor deficits following diffuse TBI.