Journal of neurotrauma
-
Journal of neurotrauma · Dec 2021
Correlation of histomorphometric changes with diffusion tensor imaging for evaluation of blast-induced auditory neurodegeneration in chinchilla.
In the present study, we have evaluated the blast-induced auditory neurodegeneration in chinchilla by correlating the histomorphometric changes with diffusion tensor imaging. The chinchillas were exposed to single unilateral blast-overpressure (BOP) at ∼172dB peak sound pressure level (SPL) and the pathological changes were compared at 1 week and 1 month after BOP. The functional integrity of the auditory system was assessed by auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE). ⋯ However, morphometric measures such as decreased viable cells and increased degenerating neurons and apoptotic cells were observed at CN, IC, and AC. Specifically, increased degenerating neurons and reduced viable cells were high on the ipsilateral side when compared with the contralateral side. These results indicate that a single blast significantly damages structural and functional integrity at all levels of CAN ROIs.
-
Journal of neurotrauma · Dec 2021
Hemorrhage and Locomotor Deficits Induced by Pain Input after Spinal Cord Injury Are Partially Mediated by Changes in Hemodynamics.
Nociceptive input diminishes recovery and increases lesion area after a spinal cord injury (SCI). Recent work has linked these effects to the expansion of hemorrhage at the site of injury. The current article examines whether these adverse effects are linked to a pain-induced rise in blood pressure (BP) and/or flow. ⋯ Further, inducing a rise in BP/flow using norepinephrine undermined long-term recovery and increased tissue loss. Mediational analyses suggest that the pain-induced rise in blood flow may foster hemorrhage after SCI. Increased BP appears to act through an independent process to adversely affect locomotor performance, tissue sparing, and long-term recovery.
-
Journal of neurotrauma · Dec 2021
Selective Myostatin Inhibition Spares Sublesional Muscle Mass and Myopenia-related Dysfunction Following Severe Spinal Cord Contusion In Mice.
Clinically relevant myopenia accompanies spinal cord injury (SCI), and compromises function, metabolism, body composition, and health. Myostatin, a transforming growth factor (TGF)β family member, is a key negative regulator of skeletal muscle mass. We investigated inhibition of myostatin signaling using systemic delivery of a highly selective monoclonal antibody - muSRK-015P (40 mg/kg) - that blocks release of active growth factor from the latent form of myostatin. ⋯ Total energy expenditure (kCal/day) at 2 weeks post-SCI was lower in SCI-immunoglobulin (Ig)G mice, but not different in SCI-muSRK-015P mice than in sham controls. We conclude that in a randomized, blinded, and controlled study in mice, myostatin inhibition using muSRK-015P had broad effects on physical, metabolic, and functional outcomes when compared with IgG control treated SCI animals. These findings may identify a useful, targeted therapeutic strategy for treating post-SCI myopenia and related sequelae in humans.
-
Although many patients diagnosed with traumatic brain injury (TBI), particularly mild TBI, recover from their symptoms within a few weeks, a small but meaningful subset experience symptoms that persist for months or years after injury and significantly impact quality of life for the person and their family. Factors associated with an increased likelihood of negative TBI outcomes include not only characteristics of the injury and injury mechanism, but also the person's age, pre-injury status, comorbid conditions, environment, and propensity for resilience. ⋯ We identify the need for increased longitudinal, global, standardized, and validated assessments on incidence, recovery, and treatments, as well as standardized assessments of the influence of genetics, race, ethnicity, sex, and environment on TBI outcomes. By identifying how epidemiological factors contribute to TBI outcomes in different groups of persons and potentially impact differential disease progression, we can guide investigators and clinicians toward more-precise patient diagnosis, along with tailored management, and improve clinical trial designs, data evaluation, and patient selection criteria.
-
Journal of neurotrauma · Dec 2021
ReviewPhenotyping the Spectrum of Traumatic Brain Injury: A Review and Pathway to Standardization.
It is widely appreciated that the spectrum of traumatic brain injury (TBI), mild through severe, contains distinct clinical presentations, variably referred to as subtypes, phenotypes, and/or clinical profiles. As part of the Brain Trauma Blueprint TBI State of the Science, we review the current literature on TBI phenotyping with an emphasis on unsupervised methodological approaches, and describe five phenotypes that appear similar across reports. However, we also find the literature contains divergent analysis strategies, inclusion criteria, findings, and use of terms. ⋯ Together, these facts confound direct synthesis of the findings. To overcome this, we introduce PhenoBench, a freely available code repository for the standardization and evaluation of raw phenotyping data. With this review and toolset, we provide a pathway toward robust, data-driven phenotypes that can capture the heterogeneity of TBI, enabling reproducible insights and targeted care.