Journal of neurotrauma
-
Journal of neurotrauma · Jun 2021
Adipose tissue-derived mesenchymal stem cell concentrated conditioned medium alters the expression pattern of glutamate regulatory proteins and aquaporin-4 in the retina after mild traumatic brain injury.
Concentrated conditioned media from adipose tissue-derived mesenchymal stem cells (ASC-CCM) show promise for retinal degenerative diseases. In this study, we hypothesized that ASC-CCM could rescue retinal damage and thereby improve visual function by acting through Müller glia in mild traumatic brain injury (mTBI). Adult C57Bl/6 mice were subjected to a 50-psi air pulse on the left side of the head, resulting in an mTBI. ⋯ Additionally, an increase in aquaporin-4 (AQP4) in Müller cells in blast mice received saline restored to normal levels in blast mice that received ASC-CCM. In vitro studies on rMC-1 Müller glia exposed to 100 ng/mL glutamate or RNA interference knockdown of GLAST expression mimicked the increased Müller cell glial fibrillary acidic protein (a marker of gliosis) seen with mTBI, and suggested that an increase in glutamate and/or a decrease in GLAST might contribute to the Müller cell activation in vivo. Taken together, our data suggest a novel neuroprotective role for ASC-CCM in the rescue of the visual deficits and pathologies of mTBI via restoration of Müller cell health.
-
Journal of neurotrauma · Jun 2021
Differential DNA methylation of the genes for amyloid precursor protein, tau and neurofilaments in human traumatic brain injury.
Traumatic brain injury (TBI) is an established risk factor for neurodegenerative disorders and dementias. Epigenetic modifications, such as DNA methylation, may alter the expression of genes without altering the DNA sequence in response to environmental factors. We hypothesized that DNA methylation changes may occur in the injured human brain and be implicated in the neurodegenerative aftermath of TBI. ⋯ Among the top 20 differentially methylated CpG sites, 11 were in the APP gene. In addition, the EWAS evaluating 828,888 CpG sites revealed 308 differentially methylated CpG sites in genes related to cellular/anatomical structure development, cell differentiation, and anatomical morphogenesis. These preliminary findings provide the first evidence of an altered DNA methylome in the injured human brain, and may have implications for the neurodegenerative disorders associated with TBI.
-
Journal of neurotrauma · Jun 2021
Interactive TutorialAssessment of compression driven shock tube designs in replicating free-field blast conditions for TBI studies.
Compression driven shock tubes are indispensable in studies of blast-induced traumatic brain injury (bTBI). The ability of shock tubes in faithfully recreating free-field blast conditions is of enormous interest and has a direct impact on injury outcomes. Toward this end, the evolution of blast wave inside and outside of the compression driven shock tube has been studied using validated, finite element based shock tube models. ⋯ Locations outside the shock tube are affected by jet-wind effects because of the sudden expansion, barring a narrow region at the exit. For the desired overpressure yield inferred in bTBI, obtaining positive phase durations of <1 msec inside the shock tube, which are sought for studies in rodents, is challenging. Overall, these results underscore that replicating free-field blast conditions using a shock tube involves tradeoffs that need to be weighed carefully and their effect on injury outcomes should be evaluated during laboratory bTBI investigations.
-
Journal of neurotrauma · Jun 2021
Imaging markers for the characterization of grey and white matter changes from acute to chronic stages after experimental traumatic brain injury.
Despite clinical symptoms, a large majority of people with mild traumatic brain injury (TBI) have normal computed tomography (CT) and magnetic resonance imaging (MRI) scans. Therefore, present-day neuroimaging tools are insufficient to diagnose or classify low grades of TBI. Advanced neuroimaging techniques, such as diffusion-weighted and functional MRI, may yield novel biomarkers that may aid in the diagnosis of TBI. ⋯ No significant changes in individual outcome measures were detected after mild TBI. However, multivariate analysis showed a significant additive contribution of diffusion parameters in the distinction between control and different grades of TBI-affected brains. Therefore, combining multiple imaging markers may increase the sensitivity for TBI-related pathology.
-
Journal of neurotrauma · Jun 2021
Unexpected findings from a pilot study on vision training as a potential intervention to reduce sub-concussive head impacts during a collegiate ice hockey season.
Player-to-player contact is the most frequent head impact mechanism in collegiate ice hockey. Training with three-dimensional multiple-object tracking (3D-MOT) could potentially reduce the quantity and severity of head impacts by enhancing player anticipation of these impacts. The purpose of this study was to evaluate the efficacy of 3D-MOT training to reduce the numbers of head impacts sustained by National Collegiate Athletic Association Division III men's and women's ice hockey players. ⋯ Conversely, 3D-MOT defensemen sustained head impacts with a mean peak rotational velocity less than that of C defensemen (3D-MOT = 11.54 ± 6.76 rad.sec-1; C = 13.65 ± 8.43 rad.sec-1). There was no significant difference for all other parameters analyzed between 3D-MOT and C groups. Player position may play an important role in future interventions to reduce head impacts in collegiate ice hockey.