Journal of neurotrauma
-
Journal of neurotrauma · Nov 2023
Prognostic value of serum biomarkers in patients with moderate-severe traumatic brain injury, differentiated by Marshall CT classification.
Prognostication is challenging in patients with traumatic brain injury (TBI) in whom computed tomography (CT) fails to fully explain a low level of consciousness. Serum biomarkers reflect the extent of structural damage in a different way than CT does, but it is unclear whether biomarkers provide additional prognostic value across the range of CT abnormalities. This study aimed to determine the added predictive value of biomarkers, differentiated by imaging severity. ⋯ The addition of the biomarker panel to established prognostic models increased the area under the curve (AUC) by 0.08 and 0.03, and the explained variation in outcome by 13-14% and 7-8%, for patients with a Marshall score of <3 and ≥3, respectively. The incremental AUC of biomarkers for individual models was significantly greater when the Marshall score was <3 compared with ≥3 (p < 0.001). Serum biomarkers improve outcome prediction after moderate-severe TBI across the range of imaging severities and especially in patients with a Marshall score <3.
-
Journal of neurotrauma · Nov 2023
Observational StudyOptic nerve diameter on non-contrast computed tomography and intracranial hypertension in patients with acute brain injury: A validation study.
Intracranial hypertension is a feared complication of acute brain injury that can cause ischemic stroke, herniation, and death. Identifying those at risk is difficult, and the physical examination is often confounded. Given the widespread availability and use of computed tomography (CT) in patients with acute brain injury, prior work has attempted to use optic nerve diameter measurements to identify those at risk of intracranial hypertension. ⋯ When used to identify those with intracranial hypertension (> 20 mm Hg), the area under the receiver operator curve (AUROC) was 0.68. Using a previously proposed threshold of 0.6 cm, the sensitivity was 81%, specificity 43%, positive likelihood ratio 1.4, and negative likelihood ratio 0.45. CT-derived optic nerve diameter using a threshold of 0.6 cm is sensitive but not specific for intracranial hypertension, and the overall correlation is weak.
-
Journal of neurotrauma · Nov 2023
Optogenetic stimulation of CA1 pyramidal neurons at theta enhances recognition memory in brain injured animals.
Abstract The hippocampus plays a prominent role in learning and memory formation. The functional integrity of this structure is often compromised after traumatic brain injury (TBI), resulting in lasting cognitive dysfunction. The activity of hippocampal neurons, particularly place cells, is coordinated by local theta oscillations. ⋯ Our results show that memory impairments in brain injured animals could be reversed by optogenetically stimulating CA1 pyramidal neurons expressing channelrhodopsin (ChR2) during learning. In contrast, injured animals receiving a control virus (lacking ChR2) did not benefit from optostimulation. These results suggest that direct stimulation of CA1 pyramidal neurons at theta may be a viable option for enhancing memory after TBI.
-
Journal of neurotrauma · Nov 2023
Neuropathological outcomes of traumatic brain injury and alcohol use in males and females: studies using preclinical rodent and clinical human specimens.
Traumatic brain injury (TBI) and alcohol misuse are inextricably linked and can increase the risk for development of neurodegenerative diseases, particularly in military veterans and contact sport athletes. Proteinopathy (defects in protein degradation) is considered an underlying factor in neurodegenerative diseases. Whether it contributes to TBI/alcohol-mediated neurodegeneration is unexplored, however. ⋯ We have previously demonstrated that ISGylation is increased in the LSCs of veterans with TBI/ALS (amyotrophic lateral sclerosis). Here, we show increased ISGylation of TDP-43 in the LSCs of TBI/ALS-afflicted female veterans compared with male veterans. Knowing that ISGylation induces proteinopathy, we suggest targeting ISGylation may prevent proteinopathy-mediated neurodegeneration post-TBI, particularly in women; however, causal studies are required to confirm this claim.
-
Journal of neurotrauma · Nov 2023
Serum Caffeine Concentration at the Time of Traumatic Brain Injury and its Long-term Clinical Outcomes.
Caffeine is one of the most widely consumed psychoactive drugs in the general population. It has a neuroprotective effect in degenerative neurological disorders; however, the association between caffeine and traumatic brain injury (TBI) outcomes is contradictory. The objective of this study was to evaluate the association between serum caffeine concentration at the time of injury and long-term functional outcomes of patients with TBI visiting the emergency department (ED). ⋯ In multi-variable logistic regression analysis, the low- and intermediate-caffeine groups were significantly associated with a higher probability of 6-month favorable functional recovery compared with the no-caffeine group [AORs (95% CI): 2.82 (1.32-6.02) and 2.18 (1.06-4.47], respectively. This study showed a significant association between a serum caffeine concentration of 0.01 to 1.66 μg/mL and good functional recovery at 6 months after injury compared with the no-caffeine group of patients with TBI with intracranial injury. These results suggest the possibility of using serum caffeine level as a potential biomarker for TBI outcome prediction and of using caffeine as a therapeutic agent in the clinical care of patients with TBI.