Journal of neurotrauma
-
Journal of neurotrauma · Dec 2023
Recovery of forearm and fine digit function after chronic spinal cord injury by simultaneous blockade of inhibitory matrix CSPG production and the receptor PTPσ.
Spinal cord injuries (SCI), for which there are limited effective treatments, result in enduring paralysis and hypoesthesia, in part because of the inhibitory microenvironment that develops and limits regeneration/sprouting, especially during chronic stages. Recently, we discovered that targeted enzymatic removal of the inhibitory chondroitin sulfate proteoglycan (CSPG) component of the extracellular and perineuronal net (PNN) matrix via Chondroitinase ABC (ChABC) rapidly restored robust respiratory function to the previously paralyzed hemi-diaphragm after remarkably long times post-injury (up to 1.5 years) following a cervical level 2 lateral hemi-transection. Importantly, ChABC treatment at cervical level 4 in this chronic model also elicited improvements in gross upper arm function. ⋯ However, instead of using ChABC, we utilized a novel and more clinically relevant systemic combinatorial treatment strategy designed to simultaneously reduce and overcome inhibitory CSPGs. Following a 3-month upper cervical spinal hemi-lesion using adult female Sprague Dawley rats, we show that the combined treatment had a profound effect on functional recovery of the chronically paralyzed forelimb and paw, as well as on precision movements of the digits. The regenerative and immune system related events that we describe deepen our basic understanding of the crucial role of CSPG-mediated inhibition via the PTPσ receptor in constraining functional synaptic plasticity at lengthy time points following SCI, hopefully leading to clinically relevant translational benefits.
-
Journal of neurotrauma · Dec 2023
Comparison of the anti-inflammatory effects of mouse adipose- and bone marrow-derived multilineage-differentiating stress-enduring cells in acute-phase spinal cord injury.
Abstract Spinal cord injury (SCI) is a serious neurological disorder, with the consequent disabilities conferred by this disorder typically persisting for life. Multilineage-differentiating stress-enduring (Muse) cells are endogenous stem cells that can be collected from various tissues as well as from mesenchymal stem cells (MSCs); additionally, these Muse cells are currently being used in clinical trials. The anti-inflammatory effect of stem cell transplantation prevents secondary injuries of SCI; however, its effect on Muse cells remains unclear. ⋯ The lesion area in the AD-Muse cell group was smaller than that in the BM-non-Muse (p = 0.049) and control groups (p = 0.012). As AD-Muse cells conferred a higher cell survival and neurotrophic factor secretion ability in vitro, AD-Muse cells demonstrated reduced inflammation after SCI. Overall, intralesional AD-Muse cell therapy is a potential therapeutic candidate that is expected to exhibit anti-inflammatory effects following acute SCI.
-
Journal of neurotrauma · Dec 2023
The inhibition of HMGB1 attenuates spinal cord edema by reducing the expression of Na+-K+-Cl- cotransporter-1 and Na+/H+ exchanger-1 in both astrocytes and endothelial cells after spinal cord injury in rats.
Sodium/water transport through Na+-K+-Cl- cotransporter-1 (NKCC1) and sodium/hydrogen exchanger-1 (NHE1) in both astrocytes and endothelial cells is critical to cytotoxic and ionic edema following spinal cord injury (SCI). High-mobility group box-1 (HMGB1) promotes spinal cord edema after SCI. Accordingly, we sought to identify both the role of HMGB1 and the mechanism of its effect on NKCC1 and NHE1 expression in astrocytes and endothelial cells as well as the role of the regulation of spinal cord edema after SCI. ⋯ The effects of HMGB1 on NKCC1 and NHE1 expression were mediated-at least in part-by activation of the Toll-like receptor 4 (TLR4)-Toll/interleukin-1 receptor domain-containing adapter inducing interferon-β (TRIF)-nuclear factor-kappa B (NF-κB) signaling pathway. The inhibition of NKCC1 or NHE1 decreased the spinal cord water content in rats following SCI, increased the Na+ concentration in the medium of cultured astrocytes after OGD/R, and reduced the astrocytic cell volume and AQP4 expression. These results imply that HMGB1 inhibition results in a reduction in NKCC1 and NHE1 expression in both astrocytes and microvascular endothelial cells and thus decreases spinal cord edema after SCI in rats and that these effects occur through the HMGB1-TLR4-TRIF-NF-κB signaling pathway.
-
Journal of neurotrauma · Dec 2023
Resilience as an Independent Predictor of Bowel related Quality of Life following Spinal Cord Injury.
Bowel dysfunction remains a prominent priority in the rehabilitation of patients with spinal cord injuries (SCIs). However, our understanding of the factors that influence bowel-related quality of life (QoL) in this population remains limited. This study aimed to investigate the potential role of resilience, defined as an individual's capacity to cope with and adapt to adversity, as a predictor of bowel-related QoL among the patients with SCI. ⋯ Overall, this study elucidates the importance of resilience in shaping patients' perceptions of their bowel health within the SCI population. In addition to the more expected determinants of bowel-related QoL, such as the severity of bowel dysfunction, resilience emerged as a notable factor. Accordingly, integrating interventions that enhance resilience within bowel rehabilitation programs may yield improvements in patients' perceived bowel health beyond the benefits achievable through bowel function enhancement alone.
-
Journal of neurotrauma · Dec 2023
FTY720 hinders IFN-γ-mediated fibrotic scar formation and facilitates neurological recovery after spinal cord injury.
Following spinal cord injury (SCI), fibrotic scar inhibits axon regeneration and impairs neurological function recovery. It has been reported that T cell-derived interferon (IFN)-γ plays a pivotal role in promoting fibrotic scarring in neurodegenerative disease. However, the role of IFN-γ in fibrotic scar formation after SCI has not been declared. ⋯ After SCI, the intraperitoneal injection of fingolimod (FTY720), a sphingosine-1-phosphate receptor 1 (S1PR1) modulator and W146, an S1PR1 antagonist, significantly reduced T cell infiltration, attenuating fibrotic scarring via inhibiting IFN-γ/IFN-γR pathway, while in situ injection of IFN-γ diminished the effect of FTY720 on reducing fibrotic scarring. FTY720 treatment inhibited inflammation, decreased lesion size, and promoted neuroprotection and neurological recovery after SCI. These findings demonstrate that the inhibition of T cell-derived IFN-γ by FTY720 suppressed fibrotic scarring and contributed to neurological recovery after SCI.