Journal of neurotrauma
-
Journal of neurotrauma · Feb 2023
White Matter Integrity Relates to Cognition in Service Members and Veterans Following Complicated Mild, Moderate, and Severe TBI, but not Uncomplicated Mild TBI.
The extant literature investigating the relationship between diffusion tensor imaging (DTI) and cognition following traumatic brain injury (TBI) is limited by small sample sizes and inappropriate control groups. The present study examined DTI metric differences between service members and veterans (SMVs) with bodily injury (Trauma Control; TC), uncomplicated mild TBI (mTBI), complicated mild TBI (compTBI), and severe-moderate TBI combined (smTBI), and how DTI metrics related to cognition within each group. Participants were 226 SMVs (56 TC, 112 mTBI, 29 compTBI, 29 smTBI) with valid neuropsychological testing and DTI at least 11 months post-injury. ⋯ In contrast, there were no significant relationships between DTI metrics and cognition/emotional functioning within the mTBI or TC groups. Overall, findings suggest a dose-response relationship between TBI severity and the strength of the relationship between white matter integrity and cognitive performance, with essentially no relationship in mTBI, some findings in compTBI, and several strongly significant relationships in smTBI. In contrast to previously reported findings, there were no differences in DTI metrics between controls, mTBI, and compTBI, and DTI metrics were unrelated to cognition in our relatively large mTBI group.
-
Journal of neurotrauma · Feb 2023
The Interaction Between APOE ε4 and Age is Associated with Emotional Distress One Year After Moderate-Severe Traumatic Brain Injury.
Emotional distress is common following moderate-severe traumatic brain injury (TBI) and is associated with poorer post-injury outcomes. Previously investigated sociodemographic, psychological, and injury-related factors account for only a small proportion of variance in post-TBI emotional distress, highlighting a need to consider other factors such as genetic factors. The apolipoprotein E gene (APOE) has been commonly studied in the TBI literature, with the ɛ4 allele linked to worse neuronal repair and recovery. ⋯ However, the main effect of APOE ɛ4 was no longer significant when individuals with pre-injury mental health problems were removed. Our findings highlight the importance of considering moderation of genetic associations, suggesting that APOE ɛ4 may be a risk factor for emotional distress specifically among older survivors of moderate-severe TBI. If these findings can be independently replicated, APOE ɛ4 carriage status, interpreted in the context of age, could be incorporated into risk prediction models of emotional distress after moderate-severe TBI, enhancing targeted early detection and intervention efforts.
-
Journal of neurotrauma · Feb 2023
Ccr2 gene ablation does not influence seizure susceptibility, tissue damage or cellular inflammation after murine pediatric traumatic brain injury.
Pediatric traumatic brain injury (TBI) is a major public health issue, and a risk factor for the development of post-traumatic epilepsy that may profoundly impact the quality of life for survivors. As the majority of neurotrauma research is focused on injury to the adult brain, our understanding of the developing brain's response to TBI remains incomplete. Neuroinflammation is an influential pathophysiological mechanism in TBI, and is thought to increase neuronal hyperexcitability, rendering the brain more susceptible to the onset of seizures and/or epileptogenesis. ⋯ Similarly, acute post-injury treatment with a CCR2 antagonist did not influence seizure susceptibility or the extent of tissue damage in wild-type (WT) mice. Together, our findings suggest that CCR2 is not a crucial driver of epileptogenesis or neuroinflammation after TBI in the developing brain. We propose that age may be an important factor differentiating our findings from previous studies in which targeting CCL2/CCR2 has been reported to be anti-inflammatory, neuroprotective or anti-seizure.
-
Journal of neurotrauma · Feb 2023
Improving the Function of Meningeal Lymphatic Vessels to Promote Brain Edema Absorption after Traumatic Brain Injury.
Brain edema is the most common and fatal complication after traumatic brain injury (TBI). Meningeal lymphatic vessels (MLVs) are the conduits that transport cerebrospinal fluid (CSF) and macromolecules to deep extracranial cervical lymph nodes (dCLNs). After TBI, the drainage function of MLVs can become impaired. ⋯ In addition, ketoprofen, 9-cisRA, and VEGF-C upregulated the lymphatic-specific proteins VEGF receptor (VEGFR)3, PROX1, forkhead box protein C2 (FOXC2), and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1). These results indicate that ketoprofen, 9-cisRA, and VEGF-C may maintain the integrity of the meningeal lymphatic wall and promote lymphatic proliferation by upregulating the expression of lymphatic vessel-specific proteins, improve meningeal lymphatic function after TBI, promote CSF drainage and brain edema absorption, reduce the immune response of the nervous system, and reduce ROS formation, thereby improving prognoses. These findings may provide new ideas for the treatment of brain edema after TBI.