Journal of neurotrauma
-
Journal of neurotrauma · Apr 2024
Trigeminal sensitization in a closed head model for mild traumatic brain injury.
Mild traumatic brain injury (mTBI) is often accompanied by neurological and ocular symptoms that involve trigeminal nerve pathways. Laser-induced shock wave (LISW) was applied to the skull of male rats as a model for mTBI, while behavioral and neural recording methods were used to assess trigeminal function. The LISW caused greater eye wiping behavior to ocular instillation of hypertonic saline (Sham = 4.83 ± 0.65 wipes/5 min, LISW = 12.71 ± 1.89 wipes/5 min, p < 0.01) and a marked reduction in the time spent in bright light consistent with enhanced periocular and intraocular hypersensitivity, respectively (Sham = 16.3 ± 5.6 s, LISW = 115.5 ± 27.3 s, p < 0.01). ⋯ By contrast, topical meningeal application of phenylephrine significantly reduced light-evoked responses of Vi/Vc and Vc/C1 neurons. These data suggested that neurons in both regions became sensitized after LISW and were responsive to changes in meningeal blood flow. Neurons at the Vi/Vc transition and at Vc/C1, however, likely serve different roles in mediating the neurovascular and sensory aspects of mTBI.
-
Journal of neurotrauma · Apr 2024
Editorial CommentTraumatic Brain Injury Effects on the Next Generation.
-
Journal of neurotrauma · Apr 2024
ReviewExperimental Models of Hospital-Acquired Infections after Traumatic Brain Injury: Challenges and Opportunities.
Patients hospitalized after a moderate or severe traumatic brain injury (TBI) are at increased risk of nosocomial infections, including bacterial pneumonia and other upper respiratory tract infections. Infections represent a secondary immune challenge for vulnerable TBI patients that can lead to increased morbidity and poorer long-term prognosis. This review first describes the clinical significance of infections after TBI, delving into the known mechanisms by which a TBI can alter systemic immunological responses towards an immunosuppressive state, leading to promotion of increased vulnerability to infections. ⋯ Then, practical decisions for the experimental design of animal studies of post-injury infections are discussed. Variables associated with the host animal, the infectious agent (e.g., species, strain, dose, and administration route), as well as the timing of the infection relative to the injury model are important considerations for model development. Together, the purpose of this review is to highlight the significant clinical need for increased pre-clinical research into the two-hit insult of a hospital-acquired infection after TBI to encourage further scientific enquiry in the field.
-
Journal of neurotrauma · Apr 2024
White Matter Organization and Cortical Thickness Differ Among Active Duty Service Members with Chronic Mild, Moderate, and Severe Traumatic Brain Injury.
Abstract This study compared findings from whole-brain diffusion tensor imaging (DTI) and volumetric magnetic resonance imaging (MRI) among 90 Active Duty Service Members with chronic mild traumatic brain injury (TBI; n = 52), chronic moderate-to-severe TBI (n = 17), and TBI-negative controls (n = 21). Data were collected on a Philips Ingenia 3T MRI with DTI in 32 directions. Results demonstrated that history of TBI was associated with differences in white matter microstructure, white matter volume, and cortical thickness in both mild TBI and moderate-to-severe TBI groups relative to controls. ⋯ In conclusion, this study provides DTI and volumetric MRI findings across the spectrum of TBI severity. These results provide support for the use of DTI and volumetric MRI to identify differences in white matter microstructure and volume related to TBI. In particular, DTI FA pothole analysis may provide greater sensitivity for detecting subtle forms of white matter injury than conventional DTI FA analyses.