Journal of neurotrauma
-
Journal of neurotrauma · Jun 2024
Cause of Concussion with Persisting Symptoms is Associated with Long-Term Recovery and Symptom Type, Duration, and Number in a Longitudinal Cohort of 600 Patients.
It is important for patients and clinicians to know the potential for recovery from concussion as soon as possible after injury, especially in patients who do not recover completely in the first month and have concussion with persisting concussion symptoms (C+PCS). We assessed the association between the causes of concussion and recovery from C+PCS in a consecutive retrospective and prospective cohort of 600 patients referred to the Canadian Concussion Center (CCC) at Toronto Western Hospital. Data were obtained from clinical records and follow-up questionnaires and not from a standardized database. ⋯ Significant differences among the four causes included age (p < 0.001), sex (p < 0.001), number of previous concussions (p < 0.001), history of psychiatric disorders (p = 0.002), and migraine (p = 0.001). Recovery from concussion was categorized into three groups: (1) Complete Recovery occurred in only 60 (10%) patients with median time 8.0 (IQR:3.5-18.0) months and included 42 S&R, 7 MVC, 8 falls, and 3 SBOV; (2) Incomplete Recovery occurred in 408 (68.0%) patients with persisting median symptom time of 5.0 (IQR:2.0-12.0) months; and (3) Unknown Recovery occurred in 132 (22.0%) patients and was because of lack of follow-up. In summary, the cause of C+PCS was associated with the type, number, and duration of symptoms and time required for recovery, although all causes of C+PCS produced prolonged symptoms in a large percentage of patients, which emphasizes the importance of concussions as a public health concern necessitating improved prevention and treatment strategies.
-
Journal of neurotrauma · Jun 2024
Observational StudyAssociation Between Early External Ventricular Drain Insertion And Functional Outcomes Six-months Following Moderate-to-Severe Traumatic Brain Injury.
Traumatic brain injury (TBI) is a leading global cause of morbidity and mortality. Intracranial hypertension following moderate-to-severe TBI (m-sTBI) is a potentially modifiable secondary cerebral insult and one of the central therapeutic targets of contemporary neurocritical care. External ventricular drain (EVD) insertion is a common therapeutic intervention used to control intracranial hypertension and attenuate secondary brain injury. ⋯ Following adjustment for the IMPACT (International Mission for Prognosis and Analysis of Clinical Trials in TBI) score extended (Core + CT), sex, injury severity score, study and treatment site, patients receiving a late EVD had higher odds of death or severe disability (GOSE 1-4) at 6 months follow-up than those receiving an early EVD adjusted odds ratio; 95% confidence interval, 2.14; 1.22-3.76; p = 0.008. Our study suggests that in patients with m-sTBI where an EVD is needed, early (≤ 24 h post-injury) insertion may result in better long-term functional outcomes. This finding supports future prospective investigation in this area.
-
Journal of neurotrauma · Jun 2024
Development of a Multimodal Machine Learning-Based Prognostication Model for Traumatic Brain Injury Using Clinical Data and Computed Tomography Scans: A CENTER-TBI and CINTER-TBI Study.
Computed tomography (CT) is an important imaging modality for guiding prognostication in patients with traumatic brain injury (TBI). However, because of the specialized expertise necessary, timely and dependable TBI prognostication based on CT imaging remains challenging. This study aimed to enhance the efficiency and reliability of TBI prognostication by employing machine learning (ML) techniques on CT images. ⋯ The developed model achieved superior performance without the necessity for manual CT assessments (AUC = 0.846 [95% CI: 0.843-0.849]) compared with the model based on the clinical and laboratory variables (AUC = 0.817 [95% CI: 0.814-0.820]) and established CT scoring systems requiring manual interpretations (AUC = 0.829 [95% CI: 0.826-0.832] for Marshall and 0.838 [95% CI: 0.835-0.841] for International Mission for Prognosis and Analysis of Clinical Trials in TBI [IMPACT]). The external validation demonstrated the prognostic capacity of the developed model to be significantly better (AUC = 0.859 [95% CI: 0.857-0.862]) than the model using clinical variables (AUC = 0.809 [95% CI: 0.798-0.820]). This study established an ML-based model that provides efficient and reliable TBI prognosis based on CT scans, with potential implications for earlier intervention and improved patient outcomes.
-
Journal of neurotrauma · Jun 2024
Applying the Sliding Scale Approach to Quantifying Functional Outcomes up to Two Years After Severe Traumatic Brain Injury.
Outcomes after severe traumatic brain injury (TBI) can be represented by a sliding score that compares actual functional recovery to that predicted by illness severity models. This approach has been applied in clinical trials because of its statistical efficiency and interpretability but has not been used to describe change in functional recovery over time. The objective of this study was to use a sliding scoring system to describe the magnitude of change in Glasgow Outcome Scale Extended (GOSE) score at 6, 12, and 24 months after severe TBI and to compare patients who improved after 6 months to those who did not. ⋯ Among those who improved at 12 months, the average magnitude of improvement was 1.7 ± 0.9 and among those who improved at 24 months, the average magnitude of improvement was 1.9 ± 1.0. Those who improved their GOSE-SS score from 6 to 24 months had longer hospital stays (mean-difference = 8.6 days; p = 0.03), longer intensive care unit (ICU) stays (mean-difference = 5.5 days; p = 0.02), and longer ventilator time (mean-difference = 5 days; p = 0.02) than those who worsened. These results support an optimistic long-term outlook for severe TBI patients and emphasize the importance of long-term follow-up in severe TBI survivors.
-
Journal of neurotrauma · Jun 2024
Predicting Hematoma Expansion and Prognosis in Cerebral Contusions: A Radiomics-Clinical Approach.
Hemorrhagic progression of contusion (HPC) often occurs early in cerebral contusions (CC) patients, significantly impacting their prognosis. It is vital to promptly assess HPC and predict outcomes for effective tailored interventions, thereby enhancing prognosis in CC patients. We utilized the Attention-3DUNet neural network to semi-automatically segment hematomas from computed tomography (CT) images of 452 CC patients, incorporating 695 hematomas. ⋯ Selected radiomic features indicated that irregularly shaped and highly heterogeneous hematomas increased the likelihood of HPC, while larger weighted axial lengths and lower densities of hematomas were associated with a higher risk of poor prognosis. Predictive models that combine radiomic and clinical features exhibit robust performance in forecasting HPC and the risk of poor prognosis in CC patients. Radiomic features complement clinical features in predicting HPC, although their ability to enhance the predictive accuracy of the clinical model for adverse prognosis is limited.