Molecular neurobiology
-
Molecular neurobiology · Feb 2015
Pathway analysis of two amyotrophic lateral sclerosis GWAS highlights shared genetic signals with Alzheimer's disease and Parkinson's disease.
Amyotrophic lateral sclerosis (ALS) is the third most common neurodegenerative disease after Alzheimer's disease (AD) and Parkinson's disease (PD). In order to unravel more genetic etiology of ALS, genome-wide association studies (GWAS) have been conducted. However, the newly identified ALS susceptibility loci exert only very small risk effects and cannot fully explain the underlying ALS genetic risk. ⋯ We compared the findings from ALS GWAS with those of previous pathway analyses of AD and PD GWAS. The results further supported the involvement of AD and PD risk pathways in ALS. We believe that our results may advance the understanding of ALS mechanisms and will be very useful for future genetic studies.
-
Molecular neurobiology · Jan 2015
Adenosine A1 receptor-dependent antinociception induced by inosine in mice: pharmacological, genetic and biochemical aspects.
Inosine is an endogenous nucleoside that has anti-inflammatory and antinociceptive properties. Inosine is a metabolite of adenosine, and some of its actions suggest the involvement of adenosine A1 receptors (A1Rs). The purpose of this study was to better understand mechanisms of inosine-induced antinociception by investigating the role of A1Rs and purine metabolism inhibitors. ⋯ DCF had no effect on inosine actions. FDS augmented the antinociceptive effect of a low systemic dose of inosine and, at a higher dose, induced antinociception by itself. Collectively, these data indicate that inosine is an agonist for A1Rs with antinociceptive properties and a potency similar to adenosine and can be considered another endogenous ligand for this receptor.
-
Molecular neurobiology · Jan 2015
Glutamate release machinery is altered in the frontal cortex of rats with experimental autoimmune encephalomyelitis.
Experimental autoimmune encephalomyelitis (EAE) is an animal model that mimics many of the clinical and pathological features of the human disease multiple sclerosis (MS). Both are inflammatory demyelinating and neurodegenerative pathologies of the central nervous system associated with motor, sensory, and cognitive deficits. In MS, gray matter atrophy is related to the emergence of cognitive deficits and contributes to clinical progression. ⋯ Biochemical analysis of EAE synaptosomes revealed alterations in the presynaptic release machinery and in the response to depolarization, which was accompanied by abnormal synapsin I phosphorylation and dispersion. These changes were associated with reduced synaptic vesicle mobility, with no alterations in synaptosomal morphology as evidenced by electron microscopy. The present are the first pieces of evidence unraveling the molecular mechanisms of frontal cortex neuronal dysfunction in EAE and, possibly, MS.
-
Molecular neurobiology · Dec 2014
Epigenetic enhancement of brain-derived neurotrophic factor signaling pathway improves cognitive impairments induced by isoflurane exposure in aged rats.
Isoflurane-induced cognitive impairments are well documented in animal models; yet, the molecular mechanisms remain largely to be determined. In the present study, 22-month-old male Sprague-Dawley rats received 2 h of 1.5 % isoflurane or 100 % oxygen daily for 3 consecutive days. For the intervention study, the rats were intraperitoneally injected with 1.2 g/kg sodium butyrate 2 h before isoflurane exposure. ⋯ These results suggest that isoflurane-induced cognitive impairments are associated with the declines in chromatin histone acetylation and the resulting downregulation of BDNF-TrkB signaling pathway. Moreover, the cognitive impairments and the signaling deficits can be rescued by histone deacetylase inhibitor sodium butyrate. Therefore, epigenetic enhancement of BDNF-TrkB signaling may be a promising strategy for reversing isoflurane-induced cognitive impairments.
-
Molecular neurobiology · Oct 2014
Mode of action of S-methyl-N, N-diethylthiocarbamate sulfoxide (DETC-MeSO) as a novel therapy for stroke in a rat model.
One approach for protecting neurons from excitotoxic damage in stroke is to attenuate receptor activity with specific antagonists. S-Methyl-N, N-diethylthiocarbamate sulfoxide (DETC-MeSO), the active metabolite of disulfiram, has been shown to be a partial antagonist of glutamate receptors and effective in reducing seizure. First, we investigated neuroprotective effect of DETC-MeSO on primary cortical neuronal culture under hypoxia/reoxygenation condition in vitro. ⋯ Microdialysis data showed that DETC-MeSO increased high potassium-induced striatal dopamine release indicating that more neurons were protected and survived under ischemic insult in the presence of DETC-MeSO. We also showed that DETC-MeSO can prevent gliosis. DETC-MeSO elicits neuroprotection through the preservation of ER resulting in reduction of apoptosis by increase of anti-apoptotic proteins and decrease of pro-apoptotic proteins.