Molecular neurobiology
-
Molecular neurobiology · Dec 2018
2-Pentadecyl-2-Oxazoline Reduces Neuroinflammatory Environment in the MPTP Model of Parkinson Disease.
Current pharmacological management of Parkinson disease (PD) does not provide for disease modification, but addresses only symptomatic features. Here, we explore a new approach to neuroprotection based on the use of 2-pentadecyl-2-oxazoline (PEA-OXA), the oxazoline derivative of the fatty acid amide signaling molecule palmitoylethanolamide (PEA), in an experimental model of PD. Daily oral treatment with PEA-OXA (10 mg/kg) significantly reduced behavioral impairments and neuronal cell degeneration of the dopaminergic tract induced by four intraperitoneal injections of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on 8-week-old male C57 mice. ⋯ PEA-OXA treatment also diminished nuclear factor-κB traslocation, cyclooxygenase-2, and inducible nitric oxide synthase expression and through upregulation of the nuclear factor E2-related factor 2 pathway, induced activation of Mn-superoxide dismutase and heme oxygenase-1. Further, PEA-OXA modulated microglia and astrocyte activation and preserved microtubule-associated protein-2 alterations. In conclusion, pharmacological activation of nuclear factor E2-related factor 2 pathways with PEA-OXA may be effective in the future therapy of PD.
-
Molecular neurobiology · Sep 2018
Rosmarinic Acid Mitigates Mitochondrial Dysfunction and Spinal Glial Activation in Oxaliplatin-induced Peripheral Neuropathy.
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting complication which develops as a consequence of treatment with chemotherapeutic agents like oxaliplatin and is a mainstay of therapy for colorectal cancer. Ever since CIPN was identified, understanding its exact pathomechanisms remains a clinical challenge. The role of mitochondrial dysfunction and glial cell activation has surfaced in the etiology of CIPN. ⋯ In vitro screening also revealed that RA did not compromise the anti-cancer activity of oxaliplatin in colon cancer cells (HT-29). Taken together, the above results demonstrate the therapeutic activity of RA against the oxaliplatin-induced mitochondrial dysfunction and neuroinflammation and thus, suggest its potential for the management of OIPN. Graphical Abstract Schematic representation of neuroprotective mechanisms of rosmarinic acid via AMPK activation in oxaliplatin-evoked peripheral neuropathy.
-
Brain photobiomodulation (PBM) therapy using red to near-infrared (NIR) light is an innovative treatment for a wide range of neurological and psychological conditions. Red/NIR light is able to stimulate complex IV of the mitochondrial respiratory chain (cytochrome c oxidase) and increase ATP synthesis. Moreover, light absorption by ion channels results in release of Ca2+ and leads to activation of transcription factors and gene expression. ⋯ In the transcranial PBM approach, delivering a sufficient dose to achieve optimal stimulation is challenging due to exponential attenuation of light penetration in tissue. Alternative approaches such as intracranial and intranasal light delivery methods have been suggested to overcome this limitation. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of brain PBM therapy.
-
Molecular neurobiology · Aug 2018
Inhibition of Peroxynitrite-Induced Mitophagy Activation Attenuates Cerebral Ischemia-Reperfusion Injury.
Activated autophagy/mitophagy has been intensively observed in ischemic brain, but its roles remain controversial. Peroxynitrite (ONOO-), as a representative of reactive nitrogen species, is considered as a critical neurotoxic factor in mediating cerebral ischemia-reperfusion (I/R) injury, but its roles in autophagy/mitophagy activation remain unclear. Herein, we hypothesized that ONOO- could induce PINK1/Parkin-mediated mitophagy activation via triggering dynamin-related protein 1 (Drp1) recruitment to damaged mitochondria, contributing to cerebral I/R injury. ⋯ Intriguingly, further study revealed that ONOO- induced tyrosine nitration of Drp1 peptide, which might contribute to mitochondrial recruitment of Drp1 for mitophagy activation. In vitro cell experiments yielded consistent results with in vivo animal experiments. Taken together, all above findings support the hypothesis that ONOO--induced mitophagy activation aggravates cerebral I/R injury via recruiting Drp1 to damaged mitochondria.
-
Molecular neurobiology · Jun 2018
Systemic Analysis of miRNAs in PD Stress Condition: miR-5701 Modulates Mitochondrial-Lysosomal Cross Talk to Regulate Neuronal Death.
Parkinson's disease (PD) is complex neurological disorder and is prevalent in the elderly population. This is primarily due to loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) region of the brain. The modulators of the selective loss of dopaminergic neurons in PD are still not well understood. ⋯ The expression of miR-5701 mimic induces mitochondrial dysfunction, defect in autophagy flux, and further sensitizes SH-SY5Y cells to 6-OHDA-induced cell death. To our knowledge, the evidence in the current study demonstrated the dysregulation of specific pattern of miRNAs in PD stress conditions. We further characterized the role of miR-5701, a novel miRNA, as a potential regulator of the mitochondrial and lysosomal function determining the fate of neurons which has important implication in the pathogenesis of PD.