International journal of cancer. Journal international du cancer
-
Comparative Study
Comparison of intensity modulated radiation therapy (IMRT) treatment techniques for nasopharyngeal carcinoma.
We studied target volume coverage and normal tissue sparing of serial tomotherapy intensity modulated radiation therapy (IMRT) and fixed-field IMRT for nasopharyngeal carcinoma (NPC), as compared with those of conventional beam arrangements. Twelve patients with NPC (T2-4N1-3M0) at Mallinckrodt Institute of Radiology underwent computed tomography simulation. Images were then transferred to a virtual simulation workstation computer for target contouring. ⋯ These encouraging dosimetric results substantiate the theoretical advantage of inverse-planning IMRT in the management of NPC. We showed that target coverage of the primary tumor was maintained and nodal coverage was improved, as compared with conventional beam arrangements. The ability of IMRT to spare the parotid glands is exciting, and a prospective clinical study is currently underway at our institution to address the optimal parotid dose-volume needs to be spared to prevent xerostomia and to improve the quality of life in patients with NPC.
-
Local polymeric delivery enhances IUdR radiosensitization of human malignant gliomas (MG). The combined low-dose rate (LDR) (0.03 Gy/h) and fractionated high-dose rate (HDR) treatments result in cures of experimental MGs. To enhance efficacy, we combined polymeric IUdR delivery, LDR, and HDR for treatments of both subcutaneous and intracranial MGs. ⋯ The most striking improvement in survival followed the IUdR polymer + LDR + HDR treatment: 66.0 + 6.4 days (P < 0.05 vs. blank polymer + LDR + HDR). The polymeric IUdR delivery plus combined continuous LDR and HDR treatments results in growth delay and improved survival in animals bearing the MG xenografts. This treatment may hold promise for the treatment of human MGs.
-
Previous studies with animal tumors showed that bone marrow (BM) is a privileged site where potentially lethal tumor cells are controlled in a dormant state by the immune system. Here, we investigated BM of breast cancer patients with respect to tumor cell content, immune activation status and memory T-cell content. BM-derived cells from primary operated breast cancer patients (n = 90) were compared with those from healthy donors (n = 10) and also with cells from respective blood samples. ⋯ Only some of the immunological changes seen in BM samples of cancer patients were also detectable in peripheral blood samples. Our hypothesis that BM is a special compartment for immunological memory and tumor dormancy is supported by the above findings. The overall results reveal that BM is a valuable additional compartment for immune diagnosis in pathological conditions and possibly for follow-up treatment strategies.
-
Bcl-2 expression is up-regulated in prostate cancer cells after androgen ablation and associated with development of androgen independence and chemoresistance. We recently reported that antisense Bcl-2 oligodeoxynucleotides (ODNs) delay progression to androgen independence in the androgen-dependent (AD) human LNCaP prostate tumor model. The objectives in this study were to determine whether antisense human Bcl-2 ODN enhances chemosensitivity of paclitaxel and whether combined antisense Bcl-2 ODN and paclitaxel further delays time to androgen-independent (AI) progression in the LNCaP tumor model. ⋯ By 15 weeks post castration, tumor volume in mice treated with antisense Bcl-2 ODN alone or mismatch control ODN plus paclitaxel was >3-fold higher than in mice treated with combined antisense Bcl-2 ODN and paclitaxel. Mean serum prostate-specific antigen levels returned to or were above precastration levels by 11 weeks post castration in mice treated with antisense Bcl-2 ODN alone or mismatch control ODN plus paclitaxel but remained 90% below the pre-castration level in mice treated with combined antisense Bcl-2 ODN and paclitaxel. These findings identify combined antisense Bcl-2 and paclitaxel as a potentially new therapeutic strategy for advanced prostate cancer by enhancing paclitaxel chemosensitivity and delaying progression of hormone-refractory prostate cancer.
-
A glucuronide doxorubicin prodrug N-[4-doxorubicin-N-carbonyl (oxymethyl) phenyl] O-beta-glucuronyl carbamate (DOX-GA3) has been developed to improve the antitumor effects of doxorubicin (DOX). The prodrug was originally designed to be activated into drug by human beta-glucuronidase (GUS) released from tumor cells in necrotic areas of tumor lesions. The aim of this study was to further improve the antitumor effects of DOX-GA3 by means of antibody-directed enzyme prodrug therapy (ADEPT). ⋯ As a result of ADEPT, the number of regressions of tumors improved from 0 out of 12 to 9 out of 11 at a dose of 250 mg/kg DOX-GA3. At the higher prodrug dose (500 mg/kg) the number of regressions improved from 2 out of 12 to 9 out of 10 as a result from the addition of enzyme-immunoconjugate. Our studies show that the efficacy of the widely used anti-cancer agent DOX may be improved by using the prodrug DOX-GA3, in combination with the tumor-specific enzyme-immunoconjugate 323/A3-mGUS and a conjugate clearing antibody.