Journal of internal medicine
-
Pseudoxanthoma elasticum (PXE) is a recessive disorder involving skin, eyes and arteries, mainly caused by ABCC6 pathogenic variants. However, almost one fifth of patients remain genetically unsolved despite extensive genetic screening of ABCC6, as illustrated in a large French PXE series of 220 cases. We searched for new PXE gene(s) to solve the ABCC6-negative patients. ⋯ CYP2U1 pathogenic variants are found in unsolved PXE patients with neurological findings, including spastic paraplegia, expanding the SPG56 phenotype and highlighting its overlap with PXE. The pathophysiology of ABCC6 and CYP2U1 should be explored to explain their respective role and potential interaction in ectopic mineralization.
-
Lung Cancer is the leading cause of cancer-related deaths worldwide. This is mainly due to late diagnosis and therefore advanced stage of the disease. Understanding the cell of origin of cancer and the processes that lead to its transformation will allow for earlier diagnosis and more accurate prediction of tumour type, ultimately leading to better treatments and lower patient morbidity. ⋯ We first elaborate on the different oncogenes that are associated with LUAD and other lung cancers. After, we lay out in detail what is known about AT2 biology, to further delve into AT2 cells as cell of origin for adenocarcinoma. Understanding the precursors of LUAD and identifying the molecular changes during its progression will allow for earlier detection and better molecular targeting of the disease in early stages.
-
Type 1 diabetes (T1D) is an autoimmune disease affecting individuals in the early years of life. Although previous studies have identified genetic loci influencing T1D diagnosis age, these studies did not investigate the genome with high resolution. ⋯ Multiple genes on chr17q12 and PHF20L1 on chr8 were associated with T1D diagnosis age and only further studies may elucidate the role of these genes for immunity and T1D onset.
-
Studies developing and applying organoid technology have greatly increased in volume and visibility over the past decade. Organoids are three-dimensional structures that are established from pluripotent stem cells (PSCs) or adult tissue stem cells (ASCs). They consist of organ-specific cell types that self-organize through cell sorting and spatially restricted lineage commitment to generate architectural and functional characteristics of the tissue of interest. ⋯ Starting from human cells (PSCs or ASCs), models of the two segments of the lung, the airways and the alveoli, can be built. Such organoids allow the study of development, physiology and disease and thus bridge the gap between animal models and clinical studies. This review discusses current developments in the pulmonary organoid field, highlighting the potential and limitations of current models.