Journal of internal medicine
-
Two related hyperinflammatory syndromes are distinguished following infection of humans with hantaviruses: haemorrhagic fever with renal syndrome (HFRS) seen in Eurasia and hantavirus pulmonary syndrome (HPS) seen in the Americas. Fatality rates are high, up to 10% for HFRS and around 35%-40% for HPS. Puumala virus (PUUV) is the most common HFRS-causing hantavirus in Europe. ⋯ Following this, findings demonstrating the ability of hantaviruses, including PUUV, to cause apoptosis resistance in infected target cells, are described. These observations, and associated inflammatory cytokine responses, may provide new insights into HFRS and HPS disease pathogenesis. Based on similarities between inflammatory responses in severe hantavirus infections and other hyperinflammatory disease syndromes, we speculate whether some therapeutic interventions that have been successful in the latter conditions may also be applicable in severe hantavirus infections.
-
It has long been suggested that angiotensin-converting enzyme inhibitors (ACEi) and angiotensin II receptor blockers (AT2s) have some degree of 'cross-reactivity' in causing angioedema. Therefore, caution has been advised when switching patients with ACEi-related angioedema to an AT2. ⋯ Compared with other antihypertensive drugs, AT2s do not increase the incidence of angioedema in patients with previous ACEi-related angioedema.
-
Triglyceride-rich lipoproteins and their remnants have emerged as major risk factors for cardiovascular disease. New experimental approaches are required that permit simultaneous investigation of the dynamics of chylomicrons (CM) and apoB48 metabolism and of apoB100 in very low-density lipoproteins (VLDL). ⋯ This novel non-steady-state model integrates the metabolic properties of both apoB100 and apoB48 and the kinetics of triglyceride. The model is physiologically relevant and provides insight not only into apoB48 release in the basal and postabsorptive states but also into the contribution of the intestine to VLDL pool size and kinetics.
-
Myeloid cells assume a wide range of phenotypes, some of which are protective against injury and infection whilst others promote cardiovascular disease. This heterogeneity is partially caused by switching of cell sources from local tissue-resident macrophage proliferation to recruitment of circulating cells, and partially due to macrophages' phenotypic plasticity. ⋯ However, it is currently unclear which cell subsets and drug targets are the most efficient and safest options. Here I review the neutrophil and macrophage supply chain and the cells' emerging heterogeneity in the setting of atherosclerosis and ischaemic heart disease.