Pharmacological research : the official journal of the Italian Pharmacological Society
-
The therapeutic outcomes of doxorubicin (Dox) treatment in breast cancer are limited by decreased drug efficiency and cardiotoxicity. The aim of this study was to investigate whether oridonin (Ori), a natural chemical abundant in the Chinese herb Isodon rubescens, might potentiate the anticancer effects, and decrease the adverse cardiotoxic effects, of Dox. On the basis of the optimized drug ratio determined through combination index calculations, we evaluated the synergistic effects and potential mechanisms of combining Dox with Ori to suppress breast cancer growth and angiogenesis both in vitro and in vivo. ⋯ Consistently with these findings, in vivo studies indicated that Ori enhanced the antitumor effect of Dox via activating apoptosis and inhibiting blood vessel formation at tumor sites. Moreover, Ori reversed the Dox-induced cardiotoxicity in a mouse model. In conclusion, our findings provide strong evidence that Ori may be highly promising in enhancing the efficacy of Dox and decreasing its adverse cardiotoxic effects, thus suggesting that Ori may serve as a potential adjunct therapy during Dox-based chemotherapy.
-
Greater understanding of tumour immunobiology has led to a new era of cancer treatment in which immuno-oncology (IO) therapies are used to boost anti-cancer immune responses. Prominent among these therapies are immune checkpoint inhibitors (ICIs), antibody-based drugs that can unleash the power of tumour-specific CD8 + T-cells. ICIs targeting the Programmed cell death protein 1 (PD-1) cell surface receptor or its ligand PD-L1 are particularly effective, with clinical studies reporting powerful and durable therapeutic impact against many cancer types, including melanoma and non-small cell lung cancer. ⋯ We give an overview of current FDA-approved drugs targeting PD-1 or PD-L1 and summarise clinical progress so far. We then discuss key mechanisms thought to underpin resistance to PD-1/PD-L1 blockade, describing biomarkers that could allow patient responses to be predicted before treatment, and tracked once treatment has started. We also present clinical and pre-clinical combination therapies that have been developed to overcome resistance and which have the potential to substantially extend the therapeutic reach of these revolutionary drugs.
-
Poly(ADP-ribose) polymerase (PARP) is involved in the pathogenesis of cell dysfunction, inflammation and organ failure during septic shock. The goal of the current study was to investigate the efficacy and safety of the clinically approved PARP inhibitor olaparib in experimental models of oxidative stress in vitro and in sepsis in vivo. In mice subjected to cecal ligation and puncture (CLP) organ injury markers, circulating and splenic immune cell distributions, circulating mediators, DNA integrity and survival was measured. ⋯ In none of the in vivo or in vitro experiments did we observe any adverse effects of olaparib on nuclear or mitochondrial DNA integrity. In conclusion, olaparib improves organ function and extends survival in septic shock. Repurposing and eventual clinical introduction of this clinically approved PARP inhibitor may be warranted for the experimental therapy of septic shock.
-
Osteoarthritis (OA), characterized by cartilage damage, synovitis inflammation and chronic pain, is a common degenerative joint disease that may lead to physical disability. In the present study, we first explored the association between N-Acylethanolamine acid amidase (NAAA) and OA progression, and then examined the capability of the NAAA inhibitor F215 to attenuate osteoarthritis. Increased NAAA expressions and decreased PEA levels in synovial membrane and lumbar spinal cord were observed in MIA induced osteoarthritic rats. ⋯ Moreover, F215 also markedly alleviated osteoarthritic pain in rats, and the therapeutic effects of F215 were blocked by the PPAR-α antagonist MK886. The results revealed that NAAA may has been implicated in OA progression, and treatment with NAAA inhibitor F215 alleviated OA development by preventing cartilage damage, reducing inflammation, and alleviating pain. Our study suggested that NAAA inhibitor might be a novel therapeutic agent for OA treatment.
-
Activation of cannabinoid CB1 receptors suppresses pathological pain but also produces unwanted side effects, including tolerance and physical dependence. Inhibition of fatty-acid amide hydrolase (FAAH), the major enzyme catalyzing the degradation of anandamide (AEA), an endocannabinoid, and other fatty-acid amides, suppresses pain without unwanted side effects typical of direct CB1 agonists. However, FAAH inhibitors have failed to show efficacy in several clinical trials suggesting that the right partnership of FAAH inhibition and pathology has yet to be identified. ⋯ Both FAAH inhibitors synergized with paclitaxel to reduce 4T1 and HeyA8 tumor cell line viability without reducing viability of non-tumor HEK293 cells. Neither FAAH inhibitor reduced viability of non-tumor HEK293 cells in either the presence or absence of paclitaxel, suggesting that nonspecific cytotoxic effects were not produced by the same treatments. Our results suggest that FAAH inhibitors reduce paclitaxel-induced allodynia without the occurrence of CB1-dependence in vivo and may, in fact, enhance the anti-tumor actions of paclitaxel in vitro.