Pharmacological research : the official journal of the Italian Pharmacological Society
-
The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, better known as 'statins', are amongst the most widely used medications in the world. They have become a pivotal component in the primary and secondary prevention of coronary artery and vascular disease. However, a growing amount of evidence has suggested that statins also possess strong pleiotropic effects irrespective of their lipid-lowering properties, which include enhancement of endothelial function, anti-inflammatory and anti-atherothrombotic properties, and immunomodulation. The following provides a comprehensive and updated review of the clinical evidence regarding the pleiotropic effects of statins in cardiovascular disorders and their potential therapeutic benefits.
-
N-Acylethanolamine acid amidase (NAAA) is a cysteine amidase that hydrolyzes saturated or monounsaturated fatty acid ethanolamides, such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). PEA has been shown to exert analgesic and anti-inflammatory effects by engaging peroxisome proliferator-activated receptor-α. Like other fatty acid ethanolamides, PEA is not stored in cells, but produced on demand from cell membrane precursors, and its actions are terminated by intracellular hydrolysis by either fatty acid amide hydrolase or NAAA. ⋯ Here, we describe the most representative NAAA inhibitors and briefly highlight their pharmacological profile. A recent study has shown that a NAAA inhibitor attenuated heat hyperalgesia and mechanical allodynia caused by local inflammation or nerve damage in animal models of pain and inflammation. This finding encourages further exploration of the pharmacology of NAAA inhibitors.
-
Patients treated with nucleoside reverse transcriptase inhibitors (NRTIs) develop painful neuropathies that lead to discontinuation of antiretroviral therapy thus limiting viral suppression strategies. The mechanisms by which NRTIs contribute to the development of neuropathy are not known. In order to elucidate the mechanisms underlying this drug-induced neuropathy, we have characterized cellular events in the central nervous system following antiretroviral treatment. ⋯ Silencing of both PKCγ and HuD reduced GAP43 levels in control mice and prevented the ddC-induced GAP43 enhanced expression. Present findings illustrate the presence of a supraspinal PKC-mediated HuD-GAP43 pathway activated by ddC. Based on our results, we speculate that antiretroviral drugs may recruit the HuD-GAP43 pathway, potentially contributing to a response to the antiretroviral neuronal toxicity.
-
The growth factor angiopoietin-1 (Ang-1) plays an essential role in angiogenesis and vascular homeostasis. Nevertheless, the role of Ang-1 in regulating vascular tone and blood flow is largely unexplored. Endothelial nitric oxide synthase (eNOS) and the junctional protein VE-cadherin are part of the complex signalling cascade initiated by Ang-1 in endothelial cells. ⋯ Our novel findings report that Ang-1 induces arteriolar vasodilation via release of NO, suggesting that Ang-1 is an important regulator of microvascular tone. As MAT. Ang-1 ameliorates detrimental effects on the microcirculation induced by inhibition of NO synthesis and stabilizes the endothelial barrier function through VE-cadherin, we propose that this Ang-1 variant may serve as a novel therapeutic agent to protect the microcirculation against endothelial dysfunction.
-
The purpose of the present study was to characterize TRPV4 channels in the rat pulmonary artery and examine their role in endothelium-dependent relaxation. Tension, Real-Time polymerase chain reaction (Real-Time PCR) and Western blot experiments were conducted on left and right branches of the main pulmonary artery from male Wistar rats. TRPV4 channel agonist GSK1016790A (GSK) caused concentration-related robust relaxation (Emax 88.6±5.5%; pD2 8.7±0.2) of the endothelium-intact pulmonary artery. ⋯ GSK (10(-10)-10(-7)M) caused either modest decrease or increase in the basal tone of endothelium-intact or denuded rings, respectively. We found a greater abundance (>1.5 fold) of TRPV4 mRNA and protein expressions in endothelium-intact vs. denuded vessels, suggesting the presence of this channel in pulmonary endothelial and smooth muscle cells as well. The present study demonstrated that NO and EDHF significantly contributed to TRPV4 channel-mediated endothelium-dependent relaxation of the rat pulmonary artery.