Journal of neurosurgical anesthesiology
-
J Neurosurg Anesthesiol · Apr 2003
Comparative StudyCerebral blood flow at 0.5 and 1.0 minimal alveolar concentrations of desflurane or sevoflurane compared with isoflurane in normoventilated pigs.
Whether desflurane and sevoflurane have clinical advantages over isoflurane in neuroanesthesia is much debated. A porcine model was used for comparison of desflurane and sevoflurane with isoflurane with respect to their cerebrovascular effects. The minimal alveolar concentration (MAC) of each of the three agents was first determined in a standardized manner in six domestic juvenile pigs to enhance comparison reliability. ⋯ Statistical comparison of desflurane and sevoflurane with isoflurane with respect to CBF and MAP revealed two statistically significant differences-namely, that CBF at 1.0 MAC desflurane was 17% higher than CBF at 1.0 MAC isoflurane (P =.0025) and that MAP at 1.0 MAC sevoflurane was 16% higher than MAP at 1.0 MAC isoflurane (P =.011). Consequently, in this study at normocapnia, these agents did not seem to differ much in their cerebral vasodilating effects at lower doses. At higher doses, however, desflurane, in contrast to sevoflurane, was found to induce more cerebral vasodilation than isoflurane.
-
J Neurosurg Anesthesiol · Apr 2003
Effects of ketamine on isoflurane- and sevoflurane-induced cerebral vasodilation in rabbits.
Although ketamine has been reported to have little effect on the cerebral circulation when used with other anesthetics, its effect on the cerebral vascular response to volatile anesthetics, which increase cerebral blood flow in a concentration-dependent manner, remains obscure. A closed cranial window was prepared in 15 pentobarbital-anesthetized adult rabbits. ⋯ In rabbits inhaling sevoflurane, the degree of cerebral vasodilator response was smaller than that by isoflurane, and the cerebral vasodilation was comparable whether in the presence or absence of ketamine (with or without l-arginine). In conclusion, ketamine reduces isoflurane-induced cerebral vasodilation, apparently independently of nitric oxide formation, while sevoflurane-induced cerebral vasodilation is not significantly affected by ketamine.
-
J Neurosurg Anesthesiol · Apr 2003
Effects of magnesium administration on brain edema and blood-brain barrier breakdown after experimental traumatic brain injury in rats.
In this study, we examined the effects of magnesium sulfate administration on brain edema and blood-brain barrier breakdown after experimental traumatic brain injury in rats. Seventy-one adult male Sprague-Dawley rats were anesthetized, and experimental closed head trauma was induced by allowing a 450-g weight to fall from a 2-m height onto a metallic disk fixed to the intact skull. Sixty-eight surviving rats were randomly assigned to receive an intraperitoneal bolus of either 750 micromol/kg magnesium sulfate (group 4; n = 30) or 1 mL of saline (group 2; n = 30) 30 minutes after induction of traumatic brain injury; 39 nontraumatized animals received saline (group 1; n = 21) or magnesium sulfate (group 3; n = 18) with an identical protocol of administration. ⋯ Evans blue dye content in the brain tissue was significantly decreased in the magnesium-treated injured group (left hemisphere: group 2, 0.0204 +/- 0.03; group 4, 0.0013 +/- 0.0002 [P <.05]; right hemisphere: group 2, 0.0064 +/- 0.0009; group 4, 0.0013 +/- 0.0003 [P <.05]) compared with the saline-treated injured group. The findings of the present study support that beneficial effects of magnesium sulfate exist after severe traumatic brain injury in rats. These results also indicate that a blood-brain barrier permeability defect occurs after this model of diffuse traumatic brain injury, and magnesium seems to attenuate this defect.
-
J Neurosurg Anesthesiol · Jan 2003
Clinical TrialIntraoperative monitoring of brain tissue oxygen and carbon dioxide pressures reveals low oxygenation in peritumoral brain edema.
Brain edema and swelling often complicate surgery for brain tumors. Its pathophysiology is unclear, as is the relationship with brain tissue oxygenation. Our hypothesis was that brain edema around tumor is cytotoxic type caused by impaired local tissue oxygenation due to increased local tissue pressure. ⋯ We conclude that brain tissue oxygenation is reduced in the peritumoral area and improves after local tissue pressure relief, especially in patients with brain swelling. Thus, ischemic processes may contribute to brain edema around tumors. Intraoperative p(ti)O2 monitoring may enhance the safety of neuroanesthesia, but the high incidence of failures with this type of sensor remains a matter of concern.