Burns : journal of the International Society for Burn Injuries
-
Severe burn is known to induce a series of pathological responses resulting in increased susceptibility to systemic inflammatory response and multiple organ failure, but the underlying molecular mechanism remains unclear at present. The main aim of this study was to expand our understanding of the events leading to circulating leukocyte response after burn by subjecting the gene expression profiles to a bioinformatic analysis. ⋯ Based on an integrated bioinformatic analysis, we concluded that Lck, Jun, Cd19, Stat1, and Cdk1 may be critical 1 day after the burn. These findings expand our understanding of the molecular mechanisms of this important pathological process. Further studies are needed to support our work, focused on identifying candidate biomarkers with sufficient predictive power to act as prognostic and therapeutic biomarkers for burn injury.
-
Despite dramatic improvements in burn care, the major part of the therapy of thermal injuries remains symptomatical in nature. A targeted approach to accelerate angiogenesis and woundhealing and reduce edema formation remains to be found. We therefore aimed to investigate the impact of anti-inflammatory, anti-coagulative and thrombolytic agents on microcirculation after thermal injuries on the mentioned parameters. ⋯ The often described positive influences of selenium for the treatment of burn patients could not be confirmed, on the contrary we found a post-traumatic expansion of the non perfused area and an increase of leukocytes in this group. The expectations to rtPA did not fulfill. Prednisolone improved angiogenesis and reduced the edema formation, both Parameters are essential for wound healing and survival of burned patients.
-
The aim of this study was to evaluate the effects of green LED light on inflammatory cells in skin burns: a histological study in rats. ⋯ Green LED light provides an anti-inflammatory effect on skin burns of rats.