Burns : journal of the International Society for Burn Injuries
-
Comparative Study Clinical Trial
Enzymatic debridement of deeply burned faces: Healing and early scarring based on tissue preservation compared to traditional surgical debridement.
Facial burns occur frequently and depending on the injured skin layers often heal with scars which may cause permanent functional and cosmetic sequelae. Preservation of the sensitive facial skin layers, especially of the dermis is essential for scarless epithelialisation. Enzymatic debridement of deep thermal burns has already been shown to assist with preserving viable dermis. However, up to date, there are no published reports on wound healing and in the long term aesthetic outcome after enzymatic debridement of facial burns. ⋯ In our current study we found Bromelain based enzymatic debridement better in some aspects of tissue preservation in deep dermal facial burn.
-
Xeroform® is a petrolatum-based fine mesh gauze containing 3% bismuth tribromophenate. Bismuth, similar to other metals, has antimicrobial properties. Xeroform® has been used for decades in burn and plastic surgery as a donor site dressing and as a covering for wounds or partial thickness burns. Despite this, the antimicrobial spectrum of Xeroform® remains largely unknown. We examined the in-vitro efficacy of Xeroform® against common burn pathogens using zone-of-inhibition methodology in a commercial research facility. ⋯ While bismuth subsalicylate, and bismuth tribromophenate unbound to Xeroform® demonstrate antimicrobial activity, it appears that Xeroform® dressings do not. The utility of Xeroform® in burn medicine may relate more to use as an impervious dressing than to antimicrobial effect. Donor sites are clean surgical wounds and clean partial thickness burns may have minimal colonization present. In such circumstances, an inactive and impervious dressing may be all that is necessary to promote wound healing.