Burns : journal of the International Society for Burn Injuries
-
Tranilast (N-[3',4'-dimethoxycinnamoyl]-anthranilic acid) is an analog of a tryptophan metabolite. It was identified with anti-inflammatory and antifibrotic activities, and used in the treatment of a variety of diseases, such as anti - allergy, bronchial asthma, and hypertrophic scars. As a drug with few adverse reactions, tranilast has attracted great attention, but its application is limited due to the uncertainty of dosages and mechanisms. In this study, the protection effects of different doses of tranilast on smoke inhalation mediated lung injury on rats, and on the damage of three kinds of lung cells in vitro were investigated. ⋯ This study indicates that tranilast had a protective effect on acute respiratory distress syndrome and early pulmonary fibrosis of rats in vivo. In addition, tranilast promotes proliferation of AT-II and PMVECs but inhibits PFs proliferation, down-regulates secretion of inflammatory cytokines and alleviates oxidative stress of AT-II, PMVECs and PFs after smoke stimuli in vitro.
-
Burn injury remains a serious cause of morbidity and mortality worldwide. Severity of burns is determined by the percentage of burned area compared to the body surface area, age of patient, and by the depth of skin and soft tissue involvement; these factors determine management as well as prospective outcomes. The pathophysiology of partial- to full-thickness burn conversion remains poorly understood and is associated with a worse overall prognosis. Recent studies have demonstrated that an altered inflammatory response may play a significant role in this conversion and therefore a reduction in early inflammation is crucial to ultimately decreasing burn severity and morbidity. We hypothesize that the application of a microcapillary gelatin-alginate hydrogel loaded with anti-TNF-α (infliximab) monoclonal antibodies to a partial-thickness burn will reduce inflammation within partially burned skin and prevent further progression to a full-thickness burn. ⋯ The application of a novel microcapillary gelatin-alginate hydrogel infused with anti-TNF-α antibody to partial thickness burns in mice showed reduction in partial to full thickness burn secondary progression as compared to controls using this murine model; this promising finding might help decrease the high morbidity and mortality associated with burn injuries.
-
It is known that hydrogels based on carboxymethyl chitosan (CMCS) have properties controling microbial growth, reducing inflammatory cell infiltration, and promoting collagen deposition. Plantamajoside (PMS), a natural Chinese herbal medicine with biological activity, has the properties of reducing inflammation, anti-oxidation, and promoting wound healing. However, the effects of carboxymethyl chitosan/plantamajoside hydrogel on partial thickness burn wounds remain unclear. ⋯ The hydrogels were highly porous with a pore size of about 250 μm, and these pores were interconnected. After adding plantamajoside, a dense microstructure was further formed. The hydrogels containing 0.25% plantamajoside significantly increased the viability and migration of L929 cells (P < 0.05). Carboxymethyl chitosan/plantamajoside hydrogel significantly improved wound healing, granulation tissue proliferation and re-epithelialization, and promoted collagen deposition (P < 0.05). Carboxymethyl chitosan/plantamajoside hydrogel also significantly decreased IL (interleukin)-1β, IL-6 and TNF-α expression, and increased IL-10 expression (P < 0.05). Furthermore, carboxymethyl chitosan/plantamajoside hydrogel significantly promoted the expression levels of VEGF, CD31, α-SMA (α-smooth muscle actin) and collagen III, and reduced the expression level of collagen Ⅰ (P < 0.05). Our data suggest that carboxymethyl chitosan/plantamajoside hydrogel promotes burn wound healing by accelerating angiogenesis and collagen deposition and reducing the inflammatory response.