Burns : journal of the International Society for Burn Injuries
-
The incidence of "acid attacks" (vitreolage) is a global concern, with those affected often receiving lifelong medical care due to physical and psychological damage. The purpose of this study was to evaluate the effectiveness of several emergency skin decontamination approaches against concentrated (>99 %) sulphuric acid and to identify the effective window of opportunity for decontamination. The effects of four decontamination methods (dry, wet, combined dry & wet and cotton cloth) were assessed using an in vitro diffusion cell system containing dermatomed porcine skin. Sulphuric acid (H2SO4) was applied to the skin with decontamination protocols performed at 10 s, 30 s, 8 min, and 30 min post exposure. ⋯ Quantification of dermal sulphur content confirmed the rapid (exponential) decrease in decontamination efficiency with time. The pH of the water effluent indicated complete neutralisation of acid from the skin surface after 90 s of irrigation. Wet decontamination (either alone or immediately following dry decontamination) was the most effective intervention evaluated, although no decontamination technique was statistically effective after 30 s exposure to the acid. These data demonstrate the time-critical consequences of dermal exposure to concentrated sulphuric acid: we find no practical window of opportunity for acid decontamination, as physical damage is virtually instantaneous.
-
Multifunctional wound dressings have been applied for burn injuries to avoid complications and promote tissue regeneration. In the present study, we fabricated a natural alginate-chitosan hydrogel comprising silymarin and green-synthesized zinc oxide nanoparticles (ZnO NPs). Then, the physicochemical attributes of ZnO NPs and loaded hydrogels were analyzed. ⋯ In vivo studies revealed faster and superior wound healing, achieving nearly complete closure by day 21. Histopathology confirmed improved cell growth, tissue regeneration, collagen deposition, and neovascularization. It is believed that this multifunctional hydrogel-based wound dressing can be applied for effective burn wound treatment.
-
This study aims to develop an experimental treatment model effective against oxidative stress in the acute period of severe burns and to analyze the mechanisms of healing large wound defects. ⋯ Stem cells may have the potential to form new skin and its appendages, providing better healing for large skin defects. Early excision treatment, by removing local necrotic tissues after extensive and deep burns, can prevent end-organ damage due to systemic oxidative stress and inflammation. We also believe that when these two treatments are used together, they can achieve the best results.