Progress in neurobiology
-
Progress in neurobiology · Jan 2014
ReviewNeurophysiology of HCN channels: from cellular functions to multiple regulations.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels are encoded by HCN1-4 gene family and have four subtypes. These channels are activated upon hyperpolarization of membrane potential and conduct an inward, excitatory current Ih in the nervous system. Ih acts as pacemaker current to initiate rhythmic firing, dampen dendritic excitability and regulate presynaptic neurotransmitter release. ⋯ In the next section, we discuss how the intracellular signals, especially recent findings concerning protein kinases and interacting proteins such as cGKII, Ca(2+)/CaMKII and TRIP8b, regulate function and expression of HCN channels, and subsequently provide an overview of the effects of neurotransmitters on HCN channels and their corresponding intracellular mechanisms. We also discuss the dysregulation of HCN channels in pathological conditions. Finally, insight into future directions in this exciting area of ion channel research is provided.
-
Progress in neurobiology · Nov 2013
ReviewEthical considerations in the management of amyotrophic lateral sclerosis.
This article examines some of the ethical concerns relevant for the management of amyotrophic lateral sclerosis (ALS). We emphasize the importance for providing a competent assessment of the clinical deficit to correctly identify the disease and to avoid incorrect diagnoses. Conveying the diagnosis to the patient and their family requires empathy and it is important to remain supportive and positive, even in the face of this incurable disease. ⋯ The wishes of patients in regard to gastrostomy, long-term ventilation and end-of life decisions must be considered in an unbiased fashion. Recent advances in the genetics of familial ALS (FALS) have demonstrated some overlap between FALS, sporadic ALS and fronto-temporal lobar dementia (FTLD). The interpretation and dissemination of the results of genetic testing although important can induce confusion, considerable anxiety and guilt in patients and their families and proper counseling is imperative.
-
Progress in neurobiology · Oct 2013
ReviewPain and suicidality: insights from reward and addiction neuroscience.
Suicidality is exceedingly prevalent in pain patients. Although the pathophysiology of this link remains unclear, it may be potentially related to the partial congruence of physical and emotional pain systems. The latter system's role in suicide is also conspicuous during setbacks and losses sustained in the context of social attachments. ⋯ Pain-, stress- and analgesic drugs-induced opponent and proponent states of the mesolimbic dopaminergic pathways may render reward and anti-reward systems vulnerable to sensitization, cross-sensitization and aberrant learning of contents and contexts associated with suicidal acts and behaviors. These findings suggest that pain patients exhibit alterations in the brain circuits mediating reward (depressed function) and anti-reward (sensitized function) that may affect their proclivity for suicide and support pain and suicidality classification among other "reward deficiency syndromes" and a new proposal for "enhanced anti-reward syndromes". We suggest that interventions aimed at restoring the balance between the reward and anti-reward networks in patients with chronic pain may help decreasing their suicide risk.
-
Progress in neurobiology · Sep 2013
ReviewDecoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.
Alzheimer's disease (AD) is an age-related devastating neurodegenerative disorder, which severely impacts on the global economic development and healthcare system. Though AD has been studied for more than 100 years since 1906, the exact cause(s) and pathogenic mechanism(s) remain to be clarified. Also, the efficient disease-modifying treatment and ideal diagnostic method for AD are unavailable. ⋯ Finally, considering the fact that AD patients exhibit cerebral glucose hypometabolism possibly due to impairments of insulin signaling and altered thiamine metabolism, we also discuss some potential possibilities to uncover diagnostic biomarkers for AD from abnormal glucose metabolism and to develop drugs targeting at repairing insulin signaling impairment and correcting thiamine metabolism abnormality. We conclude that glucose metabolism abnormality plays a critical role in AD pathophysiological alterations through the induction of multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, and so forth. To clarify the causes, pathogeneses and consequences of cerebral hypometabolism in AD will help break the bottleneck of current AD study in finding ideal diagnostic biomarker and disease-modifying therapy.
-
Progress in neurobiology · Jul 2013
ReviewImpaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome.
The accumulation of amyloid-β-containing neuritic plaques and intracellular tau protein tangles are key histopathological hallmarks of Alzheimer's disease (AD). This type of pathology clearly indicates that the mechanisms of neuronal housekeeping and protein quality control are compromised in AD. There is mounting evidence that the autophagosome-lysosomal degradation is impaired, which could disturb the processing of APP and provoke AD pathology. ⋯ There are several potential mechanisms, which could inhibit the function of Beclin 1 interactome and thus impair autophagy and promote AD pathology. The mechanisms include (i) reduction of Beclin 1 expression or its increased proteolytic cleavage by caspases, (ii) sequestration of Beclin 1 to non-functional locations, such as tau tangles, (iii) formation of inhibitory complexes between Beclin 1 and antiapoptotic Bcl-2 proteins or inflammasomes, (iv) interaction of Beclin 1 with inhibitory neurovirulent proteins, e.g. herpex simplex ICP34.5, or (v) inhibition of the Beclin 1/Vps34 complex through the activation of CDK1 and CDK5. We will shortly introduce the function of Beclin 1 interactome in autophagy and phagocytosis, review the recent evidence indicating that Beclin 1 regulates autophagy and APP processing in AD, and finally examine the potential mechanisms through which Beclin 1 dysfunction could be involved in the pathogenesis of AD.