Experimental physiology
-
Experimental physiology · Feb 2014
Differential visceral pain sensitivity and colonic morphology in four common laboratory rat strains.
What is the central question of this study? Does stress sensitivity and susceptibility to inflammation innate to certain rat strains make them vulnerable to bowel dysfunction? What is the main finding and its importance? Of four different rat strains, the Lewis rat, which displays both susceptibility to gastrointestinal inflammation and sensitivity to stress, exhibits the most aberrant gastrointestinal morphology and visceral pain sensitivity. Given the similarities to human functional bowel disorders, such as irritable bowel syndrome, this may make it a good model of this disease. Irritable bowel syndrome is a common, debilitating gastrointestinal (GI) disorder characterized by episodic exacerbations of symptoms such as abdominal pain, bloating and altered bowel habit. ⋯ At a morphological level, the gastrointestinal tract from these rats displayed mucosal goblet cell hyperplasia and alterations in muscle layer thickness. The Lewis rat strain, which is reported to have increased susceptibility to GI inflammation in addition to stress sensitivity, had the most prominent features of physiological and morphological GI dysfunction. These data support the hypothesis that background strain is a key factor in the development and exacerbation of bowel dysfunction in rodent models.
-
Experimental physiology · Feb 2014
Randomized Controlled TrialInfluence of locomotor muscle afferent inhibition on the ventilatory response to exercise in heart failure.
What is the central question of this study? Patients with heart failure often develop ventilatory abnormalities at rest and during exercise, but the mechanisms underlying these abnormalities remain unclear. This study investigated the influence of inhibiting afferent neural feedback from locomotor muscles on the ventilatory response during exercise in heart failure patients. What is the main finding and its importance? Our results suggest that inhibiting afferent feedback from locomotor muscle via intrathecal opioid administration significantly reduces the ventilatory response to exercise in heart failure patients. ⋯ The reduced ventilation resulted in lower P aO 2 (97.6 ± 2.5 versus 79.5 ± 3.0 mmHg, P < 0.05) and increased P(aCO(2)) (37.3 ± 0.9 versus 43.5 ± 1.1 mmHg, P < 0.05), with significant improvement in ventilatory efficiency (reduction in the ventilatory equivalent for carbon dioxide; P < 0.05 for all). The control subjects had no change in ventilation or measures of arterial blood gases. These data suggest that inhibition of afferent feedback from locomotor muscle significantly reduces the ventilatory response to exercise in HF patients.
-
Experimental physiology · Feb 2014
Exogenously applied muscle metabolites synergistically evoke sensations of muscle fatigue and pain in human subjects.
What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. ⋯ Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain.
-
Experimental physiology · Feb 2014
Physiological mechanisms of sex differences in exertional dyspnoea: role of neural respiratory motor drive.
What is the central question of this study? Does the combination of a higher neural respiratory drive and greater dynamic mechanical ventilatory constraints during exercise in healthy women versus men form the mechanistic basis of sex differences in activity-related dyspnoea? What is the main finding and its importance? Sex differences in activity-related dyspnoea in health primarily reflected the awareness of a higher neural respiratory drive needed to achieve any given ventilation during exercise in the setting of relatively greater dynamic mechanical ventilatory constraints in women. These findings may have implications for our understanding of the mechanisms of sex differences in exertional dyspnoea in variants of health (e.g. the elderly) and in patients with cardiorespiratory disease. The purpose of this study was to elucidate the physiological mechanisms of sex differences in exertional dyspnoea. ⋯ The tidal volume to forced vital capacity ratio (V(T)%FVC), breathing frequency, EMGdi%max, P(oes,tidal)%peak, P(di,tidal)%peak and sensory intensity and unpleasantness ratings of dyspnoea were higher, while dynamic inspiratory capacity and inspiratory reserve volume were lower at a standardized absolute ventilation of 55 l min(-1) during submaximal exercise in women versus men (all P < 0.05). In contrast, sex had no demonstrable effect on the inter-relationships between exercise-induced increases in V(T)%FVC, EMGdi%max and sensory intensity and unpleasantness ratings of dyspnoea. The results of this study suggest that sex differences in the intensity and unpleasantness of exertional dyspnoea in health are likely to reflect the awareness of a relatively higher neural respiratory motor drive (or EMGdi%max) needed to achieve any given ventilation during exercise in the setting of relatively greater dynamic mechanical constraints on V(T) expansion in women.
-
What is the topic of this review? This article reviews data from studies on human participants and animal models showing how electrical stimulation in deep brain structures (deep brain stimulation) can influence autonomic function. What advances does it highlight? Focusing on the control of the cardiovascular system and bladder function, it highlights the potential for development of deep brain stimulation as a new treatment option for patients with autonomic dysfunction. Deep brain stimulation (DBS) in humans has come of age as a tool to treat movement disorders including Parkinson's disease tremor and dystonia as well as a panoply of other disease states including headache, epilepsy, obesity, eating disorders, depression, obsessive compulsive disorder, Tourette's syndrome, addiction and chronic pain. ⋯ Focussing on the effects of stimulation at periaqueductal and periventricular sites on cardiovascular function and control of micturition, this review shows that data obtained from studies in animals is now being confirmed in humans. Lowering of blood pressure and improved baroreflex function can be evoked in humans by DBS at these midbrain sites as well as increased bladder capacity. The findings highlight the tantalizing possibility that DBS could be developed for treatment of dysfunctional autonomic states in humans.