Neurosurgery clinics of North America
-
Neurosurg. Clin. N. Am. · Jan 2005
ReviewA low-field intraoperative MRI system for glioma surgery: is it worthwhile?
As intraoperative MRI expands its presence, its use will undoubtedly increase in glioma surgery. The foregoing discussion makes it clear that its benefits are unsurpassed by any other existing system. Because of their radiographic characteristics and gross appearance, gliomas are particularly suited for intraoperative MRI-guided surgery. ⋯ Intraoperative MRI addresses many of the surgical challenges posed by gliomas. As it becomes more available, there will come a point when the prevailing persuasion will be that some poorly defined tumors near eloquent cortex should not be operated on without intraoperative MRI. In the final analysis, not only is intraoperative MRI worthwhile but it will, in all likelihood, become a standard of care for many glioma cases.
-
MRI-guided neurosurgery not only represents a technical challenge but a transformation from conventional hand-eye coordination to interactive navigational operations. In the future, multimodality-based images will be merged into a single model, in which anatomy and pathologic changes are at once distinguished and integrated into the same intuitive framework. The long-term goals of improving surgical procedures and attendant outcomes, reducing costs, and achieving broad use can be achieved with a three-pronged approach: 1. ⋯ Indeed, the drive to improve and upgrade technology is ongoing. Specifically, in the context of the real-time representation of the patient's anatomy, we have improved the quality and utility of the information presented to the surgeon, which, in turn, contributes to more successful surgical outcomes. We can also expect improvements in intraoperative imaging systems as well as increased use of nonimaging sensors and robotics to facilitate more widespread use of intraoperative MRI.
-
Metastatic spine tumors affect a large number of patients each year, resulting in significant pain,destruction of the spinal column causing mechanical instability, and neurologic deficits. Standard therapeutic options include surgery and fractionated external beam radiotherapy. The first option can be associated with significant morbidity and limited local tumor control. ⋯ The major potential benefit of radiosurgical ablation of spinal lesions is a relatively short treatment time in an outpatient setting combined with potentially better local control of the tumor with minimal risk of side effects. CyberKnife spinal radiosurgery offers a new and important alternative therapeutic modality for the treatment of spinal metastases in medically inoperable patients, previously irradiated sites, and for lesions not amenable to open surgical techniques or as an adjunct to surgery. Spinal radiosurgery is likely to become an essential part of any neurosurgical spine center that treats a large number of patients with spinal metastases.
-
The generation of neuropathic pain is a complex phenomenon involving a process of peripheral and central sensitization producing enhanced transmission of nociceptive inputs to the brain associated with the loss of discriminatory processing of noxious and innocuous stimuli. This increased flow of abnormally processed nociceptive inputs to the brain may overcome the ability of descending modulatory pathways to produce analgesia, causing further worsening of the pain. Several crucial locations involved in the physiologic generation of pain inputs (eg, peripheral nociceptors, dorsal horns, thalamus, cortex) show evidence of functional reorganization and altered nociceptive processing in association with chronic pain. These locations present the best targets for therapeutic intervention, including systemic administration of drugs able to counteract the chemical storm induced by neural injuries in the nociceptive afferents and dorsal horns, or for more focused intervention, such as neuroablative procedures; intrathecal drug delivery; and spinal cord, deep brain, or motor cortex stimulation.