The Journal of nutritional biochemistry
-
Neurological diseases comprise a group of heterogeneous disorders characterized by progressive brain dysfunction and cell death. In the next years, these diseases are expected to constitute a world-wide health problem. Because excitotoxicity and oxidative stress are involved in neurodegenerative diseases, it becomes relevant to describe pharmacological therapies designed to activate endogenous cytoprotective systems. ⋯ Curcumin also reduced quinolinic acid-induced oxidative stress (measured as protein carbonyl content) at 6 h post-lesion. The protective effects of curcumin were associated to its ability to prevent the quinolinic acid-induced decrease of striatal intra-nuclear Nrf2 levels (30 and 120 min post-lesion), and total superoxide dismutase and glutathione peroxidase activities (1 day post-lesion). Therefore, results of this study support the concept that neuroprotection induced by curcumin is associated with its ability to activate the Nrf2 cytoprotective pathway and to increase the total superoxide dismutase and glutathione peroxidase activities.
-
The immunoregulatory effects of dietary omega-3 fatty acids are still not fully characterized. The aim of this study was to determine whether dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) intake limits intestinal ischemia-reperfusion (IR) injury. To test this, rats were fed either control or EPA/DHA supplemented diet for 3 weeks following which they underwent either a sham or an IR surgical protocol. ⋯ While no changes in cytokines were observed, eicosanoid analyses of intestinal tissue revealed an increase in metabolites of the 12-lipoxygenase pathway following IR. Further, IR in EPA/DHA fed animals was accompanied by a significant increase of 17,18-epoxyeicosatetraenoic acid, 8-Iso prostaglandin F(3α) and thromboxane B(3), by more than 12-, 6-, 3-fold, respectively. Thus, the data indicate that EPA/DHA supplementation may be able to reduce early intestinal IR injury by anti-oxidative and anti-inflammatory mechanisms.
-
Curcumin, a polyphenolic compound derived from turmeric, has protective effects on myocardial injury through attenuation of oxidative stress and inflammation. Toll-like receptor 2 (TLR2), a key mediator of the innate immune system, is involved in myocardial infarction and examined if controlled by curcumin. Rat cardiomyocytes (CMs) were stimulated with tumor necrosis factor (TNF)-α, peptidoglycan (PGN) or hypoxia/reoxygenation (H/R) with or without curcumin pretreatment. ⋯ Cardiac contractility in the Cur+I/R group was also improved compared with that in the I/R group (max dp/dt in Cur+I/R group: 9660±612 vs. I/R group: 8119±366, P<.05). These results suggest that selective inhibition of TLR2 by curcumin could be preventive and therapeutic for myocardial infarction.
-
Epigallocatechin gallate (EGCG), the major polyphenol in green tea, acutely stimulates production of nitric oxide (NO) from vascular endothelium to reduce hypertension and improve endothelial dysfunction in spontaneously hypertensive rats. Herein, we explored additional mechanisms whereby EGCG may mediate beneficial cardiovascular actions. When compared with vehicle-treated controls, EGCG treatment (2.5 μM, 8 h) of human aortic endothelial cells (HAEC) caused a ~three-fold increase in heme oxygenase-1 (HO-1) mRNA and protein with comparable increases in HO-1 activity. ⋯ Finally, liver from mice chronically treated with EGCG had increased HO-1 and decreased VCAM-1 expression. Thus, in vascular endothelium, EGCG requires p38 MAPK to increase expression of Nrf-2 that drives expression of HO-1, resulting in increased HO-1 activity. Increased HO-1 expression may underlie anti-inflammatory actions of EGCG in vascular endothelium that may help mediate beneficial cardiovascular actions of green tea.
-
Biphenolic components in the Magnolia family have shown several pharmacological activities such as antitumor effects. This study investigated the effects of 4-O-methylhonokiol (MH), a constituent of Magnolia officinalis, on human colon cancer cell growth and its action mechanism. 4-O-methylhonokiol (0-30 μM) decreased constitutive activated nuclear factor (NF)-κB DNA binding activity and inhibited growth of human colon (SW620 and HCT116) cancer cells. ⋯ Conversely, inhibition of NF-κB with specific inhibitor or siRNA augmented MH-induced apoptotic cell death. 4-O-methylhonokiol inhibited tumor growth, NF-κB activity and expression of antiapoptotic proteins; however, it increased the expression of apoptotic proteins as well as p21 in xenograft nude mice bearing SW620 cancer cells. The present study reveals that MH causes p21-mediated human colon cancer cell growth inhibition through suppression of NF-κB and indicates that this compound by itself or in combination with other anticancer agents could be useful for the treatment of cancer.