The Journal of steroid biochemistry and molecular biology
-
J. Steroid Biochem. Mol. Biol. · Nov 2016
ReviewRelative importance of summer sun exposure, vitamin D intake, and genes to vitamin D status in Dutch older adults: The B-PROOF study.
The prevalence of vitamin D deficiency among seniors is high. Whereas sun exposure, vitamin D intake, genes, demographics, and lifestyle have been identified as being important determinants of vitamin D status, the impact of these factors is expected to differ across populations. To improve current prevention and treatment strategies, this study aimed to explore the main determinants of vitamin D status and its relative importance in a population of community-dwelling Dutch older adults. ⋯ The investigated determinants explained 35% of 25(OH)D status. Of the three main determinants under study, sun exposure still appeared to be an important determinant of serum 25(OH)D in older individuals, closely followed by genes, and vitamin D intake. Given the low frequency of vitamin D supplement use in this population, promoting supplement use may be an inexpensive, easy, and effective strategy to fight vitamin D deficiency.
-
J. Steroid Biochem. Mol. Biol. · Nov 2016
Environmental and genetic determinants of vitamin D status among older adults in London, UK.
Despite the high prevalence of vitamin D deficiency among older adults in the UK, studies investigating the determinants of vitamin D status in this group are lacking. We conducted a cross-sectional study in 222 older adults living in sheltered accommodation in London, UK, who were screened for participation in a clinical trial of vitamin D supplementation for the prevention of acute respiratory infection. Details of potential demographic and lifestyle determinants of vitamin D status were collected by questionnaire and blood samples were taken for analysis of serum 25-hydroxyvitamin D (25[OH]D) concentration and DNA extraction. ⋯ The following factors were independently associated with lower serum 25(OH)D concentration: non-white ethnicity (-8.6nmol/L, 95% CI -14.9 to -2.3, P=0.008); lack of vitamin D supplement consumption (-17.1nmol/L, 95% CI -23.3 to -10.9, P<0.001) vs. taking a daily supplement; sampling in Q1/January-March (-12.2nmol/L, 95% CI -21.5 to -2.9, P=0.01), and sampling in Q4/October-December (-10.3nmol/L, 95% CI -20.2 to -0.4, P=0.04) vs. sampling in Q3/July-September. None of the 15 SNP investigated independently associated with serum 25(OH)D concentration after correcting for multiple comparisons. In conclusion, vitamin D deficiency was highly prevalent among the older adults in this study; non-White ethnicity, lack of vitamin D supplement consumption and sampling in winter and spring independently associated with lower vitamin D status.
-
J. Steroid Biochem. Mol. Biol. · Oct 2016
Cardiac effect of vitamin D receptor modulators in uremic rats.
Vitamin D receptor (VDR) modulators (VDRMs) are commonly used to control secondary hyperparathyroidism (SHPT) associated with chronic kidney disease, and are associated with beneficial outcomes in cardiovascular disease. In this study, we compared the cardiac effect of VS-105, a novel VDRM, with that of paricalcitol in 5/6 nephrectomized uremic rats. Male Sprague-Dawley rats were 5/6 nephrectomized, fed a standard diet for 4 weeks to establish uremia, and then treated (intraperitoneally, 3 times/week) with vehicle (propylene glycol), paricalcitol (0.025 and 0.15μg/kg), or VS-105 (0.05 and 0.3μg/kg) for 4 weeks. ⋯ Western blotting showed significant decreases in a fibrosis marker TGF-β1 in both high dose VDRM groups (vs. vehicle) and Masson trichrome staining showed significant decreases in cardiac fibrosis in these groups. These results suggest that VS-105 is less hypercalcemic than paricalcitol and has favorable effects on SHPT and cardiac parameters that are similar to those of paricalcitol in uremic rats. The cardioprotective effect is a noteworthy characteristic of VS-105.
-
J. Steroid Biochem. Mol. Biol. · Jun 2016
ReviewProgesterone neuroprotection: The background of clinical trial failure.
Since the first pioneering studies in the 1990s, a large number of experimental animal studies have demonstrated the neuroprotective efficacy of progesterone for brain disorders, including traumatic brain injury (TBI). In addition, this steroid has major assets: it easily crosses the blood-brain-barrier, rapidly diffuses throughout the brain and exerts multiple beneficial effects by acting on many molecular and cellular targets. Moreover, progesterone therapies are well tolerated. ⋯ We made efforts to present a balanced view of the strengths and limitations of the translational studies and of some serious issues with the clinical trials. We place particular emphasis on the translational value of animal studies and the relevance of TBI biomarkers. The probability of failure of ProTECT III and SyNAPSE was very high, and we present them within the broader context of other unsuccessful trials.
-
J. Steroid Biochem. Mol. Biol. · Jan 2016
Comparative StudyPost-hoc analysis of vitamin D status and reduced risk of preterm birth in two vitamin D pregnancy cohorts compared with South Carolina March of Dimes 2009-2011 rates.
Two vitamin D pregnancy supplementation trials were recently undertaken in South Carolina: The NICHD (n=346) and Thrasher Research Fund (TRF, n=163) studies. The findings suggest increased dosages of supplemental vitamin D were associated with improved health outcomes of both mother and newborn, including risk of preterm birth (<37 weeks gestation). How that risk was associated with 25(OH)D serum concentration, a better indicator of vitamin D status than dosage, by race/ethnic group and the potential impact in the community was not previously explored. While a recent IOM report suggested a concentration of 20 ng/mL should be targeted, more recent work suggests optimal conversion of 25(OH)D-1,25(OH)2D takes place at 40 ng/mL in pregnant women. ⋯ In this post-hoc analysis, achieving a 25(OH)D serum concentration ≥40 ng/mL significantly decreased the risk of preterm birth compared to ≤20 ng/mL. These findings suggest the importance of raising 25(OH)D levels substantially above 20 ng/mL; reaching 40 ng/mL during pregnancy would reduce the risk of preterm birth and achieve the maximal production of the active hormone.