Molecular and cellular neurosciences
-
Mol. Cell. Neurosci. · May 2014
Over-expression of astrocytic ET-1 attenuates neuropathic pain by inhibition of ERK1/2 and Akt(s) via activation of ETA receptor.
A differential role of endothelin-1 (ET-1) in pain processing has recently been suggested. However, the function of central ET-1 in neuropathic pain (NP) has not been fully elucidated to date. We report here the action of endogenous central ET-1 in sciatic nerve ligation-induced NP (SNL-NP) in a transgenic animal model that over-expresses ET-1 in the astrocytes (GET-1 mice). ⋯ The effects of BQ-123 on the mRNA expression of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and protein kinase B/serine protein kinase (Akt(s)) were assessed in the ipsilateral L4-L6 segments harvested 30min after BQ-123 administration on day 7 after surgery. Phosphorylation of ERK1/2 and Akt(s) in the ipsilateral spinal cord of GET-1 mice was reduced following SNL, whereas no reduction was observed after intrathecal injection of BQ-123. In conclusion, our results showed that the xover-expression of astrocytic ET-1 reduced SNL-induced allodynia and hyperalgesia by inhibiting the activation of ERK1/2 and Akt(s) via the ETA-R-mediated pathway.
-
Mol. Cell. Neurosci. · May 2014
Temporal alterations in aquaporin and transcription factor HIF1α expression following penetrating ballistic-like brain injury (PBBI).
Brain edema is a primary factor in the morbidity and mortality of traumatic brain injury (TBI). The various isoforms of aquaporin 4 (AQP4) and aquaporin 9 (AQP9) are important factors influencing edema following TBI. Others have reported that these AQPs are regulated by the transcription factor hypoxia inducible factor (HIF) 1α. Therefore, we examined the temporal alterations in the multiple isoforms of AQP4 and AQP9, and its possible upstream regulation by HIF1α, and evaluated whether different severities of penetrating injury influence these mechanisms. ⋯ PBBI is characterized by a loss of AQP4 M1, AQP4 isoform 3 and AQP9 at delayed time-points. The severity of the injury (PBBI versus probe control) increased these effects. Therefore, AQP9 and the AQP4 M1 isoform may be regulated by HIF1α, but not AQP4 isoform 3. This delayed loss of aquaporins may markedly reduce the ability of the brain to efflux water, contributing to the protracted edema that is a characteristic following severe penetrating TBI. Factors contributing to edema differ with different types and severities of TBI. For example, cellular based edema is more prominent in diffuse non-penetrating TBI whereas vasogenic edema is more prevalent with TBI involving hemorrhage. Molecular regulation leading to edema will likely also differ, such that treatments which have been suggested for non-hemorrhagic moderate TBI, such as the suppression of aquaporins, may be detrimental in more severe forms of TBI.
-
Mol. Cell. Neurosci. · Mar 2014
MeCP2 is required for activity-dependent refinement of olfactory circuits.
Methyl CpG binding protein 2 (MeCP2) is a structural chromosomal protein involved in the regulation of gene expression. Alterations in the levels of MeCP2 have been related to neurodevelopmental disorders. Studies in mouse models of MeCP2 deficiency have demonstrated that this protein is important for neuronal maturation, neurite complexity, synaptogenesis, and synaptic plasticity. ⋯ The defective refinement observed in Mecp2 KO mice was prevented by daily treatment with ampakine beginning after the first postnatal week. These observations indicate that increasing synaptic activity at early postnatal stage might circumvent the detrimental effect of MeCP2 deficiency on circuitry maturation. The present results provide in vivo evidence in real time for the role of MeCP2 in activity-dependent maturation of olfactory circuitry, with implications for understanding the mechanism of MeCP2 mutations in the development of neural connectivity.
-
Mol. Cell. Neurosci. · Nov 2013
Modulation of semaphorin3A in perineuronal nets during structural plasticity in the adult cerebellum.
In the adult central nervous system (CNS) subsets of neurons are enwrapped by densely organized extracellular matrix structures, called perineuronal nets (PNNs). PNNs are formed at the end of critical periods and contribute to synapse stabilization. Enzymatic degradation of PNNs or genetic deletion of specific PNN components leads to the prolongation of the plasticity period. ⋯ We found that Sema3A in PNNs is reduced during enhanced neuritic remodeling, in both physiological and injury-induced conditions. Moreover, we provide evidence that Sema3A is tightly associated with Purkinje axons and their terminals and its amount in the PNNs is related to Purkinje cell innervation of DCN neurons, but not to glutamatergic inputs. On the whole these data suggest that Sema3A may contribute to the growth-inhibitory properties of PNNs and Purkinje neurons may directly control their specific connection pattern through the release and capture of this guidance cue in the specialized ECM that surrounds their terminals.
-
Mol. Cell. Neurosci. · Sep 2013
Regular treadmill exercise prevents sleep deprivation-induced disruption of synaptic plasticity and associated signaling cascade in the dentate gyrus.
Evidence suggests that regular exercise can protect against learning and memory impairment in the presence of insults such as sleep deprivation. The dentate gyrus (DG) area of the hippocampus is a key staging area for learning and memory processes and is particularly sensitive to sleep deprivation. The purpose of this study was to determine the effect of regular exercise on early-phase long-term potentiation (E-LTP) and its signaling cascade in the presence of sleep deprivation. ⋯ Regular exercise appears to exert a protective effect against sleep deprivation-induced spatial memory impairment by inducing hippocampal signaling cascades that positively modulate basal and stimulated levels of key effectors such as P-CaMKII and BDNF, while attenuating increases in the protein phosphatase calcineurin.