Current opinion in biotechnology
-
Curr. Opin. Biotechnol. · Feb 2019
ReviewCritical review on engineering deaminases for site-directed RNA editing.
The game-changing role of CRISPR/Cas for genome editing draw interest to programmable RNA-guided tools in general. Currently, we see a wave of papers pioneering the CRISPR/Cas system for RNA targeting, and applying them for site-directed RNA editing. ⋯ We conclude that the CRISPR/Cas system seems not generally superior to other RNA targeting strategies in solving the most pressing problem in the RNA editing field, which is to obtain high efficiency in combination with high specificity. However, once achieved, RNA editing promises to complement or even outcompete DNA editing approaches in therapy, and also in some fields of basic research.
-
Recent developments in genome engineering methods have advanced our knowledge of central nervous system (CNS) function in both normal health and following disease or injury. This review discusses current literature using gene editing tools in CNS disease and injury research, such as improving viral-mediated targeting of cell populations, generating new methods for genome editing, reprogramming cells into CNS cell types, and using organoids as models of development and disease. Readers may gain inspiration for continuing research into new genome engineering methods and for therapies for CNS applications.
-
Curr. Opin. Biotechnol. · Aug 2015
ReviewNanostructured sensors for biomedical applications--a current perspective.
Nanostructured sensors have unique capabilities that can be tailored to advantage in advancing the diagnosis, monitoring and cure of several diseases and health conditions. This report aims at providing a current perspective on, (a) the emerging clinical needs that defines the challenges to be addressed by nanostructured sensors, with specific emphasis on early stage diagnosis, drug-diagnostic combinations, and predictive models to design therapy, (b) the emerging industry trends in in vitro diagnostics, mobile health care, high-throughput molecular and cell-based diagnostic platforms, and (c) recent instances of nanostructured biosensors, including promising sensing concepts that can be enhanced using nanostructures that carry high promise towards catering to the emerging clinical needs, as well as the market/industry trends.
-
Curr. Opin. Biotechnol. · Oct 2011
ReviewInfection and tissue engineering in segmental bone defects--a mini review.
As tissue engineering becomes more of a clinical reality through the ongoing bench to bedside transition, research in this field must focus on addressing relevant clinical situations. Although most in vivo work in the area of bone tissue engineering focuses on bone regeneration within sterile, surgically created defects, there is a growing need for the investigation of bone tissue engineering approaches within contaminated or scarred wound beds, such as those that may be encountered following traumatic injury or during delayed reconstruction/regeneration. Significant work has been performed in the area of local drug delivery via biomaterial carriers, but there is little intersection in the available literature between antibiotic delivery and tissue regeneration. In this review, we examine recent advances in segmental bone defect animal models, bone tissue engineering, and drug delivery with the goal of identifying promising approaches and areas needing further investigation towards developing both a better understanding of and new tissue engineering approaches for addressing infection control while simultaneously initiating bone regeneration.