Neuroreport
-
Re-exposure to morphine-associated environments elicits morphine-seeking behavior after a long period of withdrawal in rats with a history of morphine dependence. Adaptations in glutamate receptor 1 (GluR1) phosphorylation in limbic brain regions have been shown to occur during withdrawal from addictive drugs, such as cocaine, methamphetamine, and heroin. However, whether similar adaptations exist after spontaneous withdrawal from repeated morphine intake has not been studied. ⋯ Phosphorylation of GluR1 at Ser845, but not Ser831, increases in the nucleus accumbens and central amygdala from 1 to 10 days of withdrawal, and there were no changes in GluR1 phosphorylation at Ser845 or Ser831 in the hippocampal CA1 subregion from 1 to 10 days of withdrawal. Significant positive correlations between numbers of drug-seeking responses and GluR1 phosphorylation at Ser845 in the nucleus accumbens were found in individual animals. These results suggest that time-dependent and region-specific changes in phosphorylation of GluR1 at Ser845, but not Ser831, are involved in the drug-seeking behavior elicited by re-exposure to the morphine-associated context.
-
Transient global ischemia induces selective hippocampal pyramidal neuronal death. Under conditions of severe ischemic hypoxia, hypoxia-inducible factor-1α (HIF-1α) induces apoptosis. Exendin-4 (Ex-4), the glucagon-like peptide-1 receptor (GLP-1R) agonist, provides neuroprotection against brain damage after cerebral ischemia. ⋯ These in-vivo results were confirmed in vitro in SH-SY5Y cells and primary cortical neurons treated with 100 nM of Ex-4 under hypoxic conditions (0.1%>O2). We found that Ex-4 decreased the HIF-1α expression in the SH-SY5Y cell line and primary cortical neurons under hypoxic conditions, and this effect was reversed by cotreatment with exendin (9-39), a GLP-1R antagonist. These results suggest that HIF-1α may be involved in the neuroprotective effect of Ex-4 in the hypoxia-damaged brain.
-
Recent studies on cerebrospinal fluid (CSF) homeostasis emphasize the importance of water flux through the pericapillary (Virchow-Robin) space for both CSF production and reabsorption (Oreskovic and Klarica hypothesis), and challenge the classic CSF circulation theory, which proposes that CSF is primarily produced by the choroid plexus and reabsorbed by the arachnoid villi. Active suppression of aquaporin-1 (AQP-1) expression within brain capillaries and preservation of AQP-1 within the choroid plexus together with pericapillary water regulation by AQP-4 provide a unique opportunity for testing this recent hypothesis. We investigated water flux into three representative regions of the brain, namely, the cortex, basal ganglia, and third ventricle using a newly developed water molecular MRI technique based on JJ vicinal coupling between O and adjacent protons and water molecule proton exchanges (JJVCPE imaging) in AQP-1 and AQP-4 knockout mice in vivo. The results clearly indicate that water influx into the CSF is regulated by AQP-4, and not by AQP-1, strongly supporting the Oreskovic and Klarica hypothesis.
-
Intrastriatal transplantation of dopamine (DA) neurons can restore DA levels in the striatum and improve parkinsonian deficits in experimental studies. However, the mechanisms underlying these effects are poorly understood. Corticostriatal synaptic plasticity represents an important cellular mechanism for information storage and behavioural learning in the brain. ⋯ In turn, malfunctioning synaptic plasticity is associated with motor deficits that resemble features of PD. It is yet unknown whether or not transplanted dopaminergic neurons can restore these striatal deficits in PD. Could this be the mechanism underlying the therapeutic effects of transplants? Recent studies have begun to shed light on this matter using different approaches.
-
Randomized Controlled Trial
Motor cortex-induced plasticity by noninvasive brain stimulation: a comparison between transcranial direct current stimulation and transcranial magnetic stimulation.
The aim of this study was to test and compare the effects of a within-subject design of repetitive transcranial magnetic stimulation (rTMS) [coupled with sham transcranial direct current stimulation (tDCS)] and tDCS (coupled with sham rTMS) on the motor cortex excitability and also compare the results against sham tDCS/sham rTMS. We conducted a double-blinded, randomized, sham-controlled, cross-over trial. Eleven right-handed, healthy individuals (five women, mean age: 39.8 years, SD 13.4) received the three interventions (cross-over design) in a randomized order: (a) high-frequency (HF) rTMS (+sham tDCS), (b) anodal tDCS (+sham rTMS), and (c) sham stimulation (sham rTMS+sham tDCS). ⋯ In conclusion, here, we showed that although both techniques induced similar motor gains, they induce opposing results in cortical excitability. HF rTMS is associated with an increase in corticospinal excitability, whereas 20 min of tDCS induces the opposite effect. We discuss potential implications of these results to future clinical experiments using rTMS or tDCS for motor function enhancement.