Neuroreport
-
Prism adaptation may alleviate some symptoms of spatial neglect. However, the mechanism through which this technique works is still unclear. ⋯ After two consecutive days of prism adaptation, participants demonstrated a significant improvement in 'aiming' spatial bias, with no effect on 'where' spatial bias. These findings suggest that prism adaptation may primarily affect motor-intentional 'aiming' bias in poststroke spatial neglect patients.
-
General anesthetic mechanisms are poorly understood. Anesthetic immobilizing effects occur in the spinal ventral horn. However, a detailed analysis of anesthetic effects on ventral motor networks is lacking. ⋯ Isoflurane abolished pharmacologically-induced versus noxious stimulus-induced motor output at similar concentrations. Propofol abolished pharmacologically-induced fictive locomotion through a γ-aminobutyric acid type A-receptor mechanism. Anesthetic effects on pharmacologically-elicted fictive locomotion appear clinically-relevant, and support a ventral horn immobilizing effect on locomotor rhythm generation.
-
Hemispheric differences in the temporal processing of musical sounds within the primary auditory cortex were investigated using functional magnetic resonance imaging (fMRI) time series analysis on a 3.0 T system in right-handed individuals who had no formal training in music. The two hemispheres exhibited a clear-cut asymmetry in the time pattern of fMRI signals. ⋯ Although the left primary auditory cortex processed the entire 30-s musical sound stimulus as a single event, the right primary auditory cortex had low-level processing of sounds with multiple segmentations of shorter time scales. The study indicated that musical sounds are processed as 'sounds with contents', similar to how language is processed in the left primary auditory cortex.
-
One of the major limitations in studying the mechanisms of blast-induced traumatic brain injury (bTBI) or screening therapeutics for protection is the lack of suitable laboratory model systems that can closely mimic the complex blast exposure. Although animal models of bTBI that use shock tubes to mimic blast exposure are available, no high throughput shock tube-based in-vitro models have been reported. Here, we report an in-vitro bTBI model using a compressed air-driven shock tube and mouse neuroblastoma/rat glioblastoma hybrid cells (NG108-15) or SH-SY5Y human neuroblastoma cells in tissue culture plates. Our data showed significant neurobiological effects with decreased adenosine triphosphate levels, increased cellular injury, lactate dehydrogenase release, and reactive oxygen species formation after blast exposure.
-
The effect of transcranial direct current stimulation (tDCS) on the precise nondominant hand movement was investigated by applying anodal stimulation over the right primary motor cortex. We recruited 14 healthy participants for this single-blind, sham-controlled crossover trial. ⋯ The deviation area and path length of the task were significantly decreased after anodal tDCS application and were further enhanced at 30 min after stimulation. These results suggest that anodal tDCS over the primary motor cortex enhances the precise movement of the nondominant hand for 30 min in healthy participants.