Neuroreport
-
The postnatal reorganization of rat proprioreceptive muscle afferent spinal terminal fields was explored by labelling transganglionically afferents from extensor digitorum communis with cholera toxin B sub-unit at different ages. Immunocytochemistry revealed labelled afferents in all segments examined (C4-T2) as well as retrogradely labelled motoneurones (C5-T1). ⋯ Between P7 and adult, a significant decrease in bouton density was found in the area dorsomedial to the labelled motoneurones that contained labelled dendrites and antagonist motoneurones. This anatomical reorganization may explain both the increasing stretch reflex threshold and its concomitant decrease in magnitude with age, and the reduction in excitatory connections to antagonist motoneurones, previously described in developmental neurophysiological studies.
-
Surgical removal of the dominant medial temporal lobe regions runs a considerable risk of verbal memory deficits which may be compensated for postoperatively by corresponding regions in the non-dominant medial temporal lobe. We examined this possibility by recording event-related potentials (ERPs) to words from the medial temporal lobes of patients with left-sided temporal lobe epilepsy (TLE) undergoing presurgical evaluation. N400 amplitudes in the right anterior medial temporal lobe predicted the postoperative verbal recall performance of individual patients with surprising accuracy, indicating that intracranial recordings can be used to quantify the functional capacities of the right hemisphere that can compensate for the verbal memory deficits after loss of medial temporal lobe structures in the left hemisphere.
-
(5R,6R) 6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]oc tane (PTAC) is a selective muscarinic ligand with high affinity for central muscarinic receptors, agonist mode of action at the muscarinic M2 and M4 receptor subtypes and substantially less or no affinity for central dopamine receptors. In the present study PTAC, as well as the muscarinic agonists oxotremorine, RS86 and pilocarpine, inhibited dopamine D1 and D2 receptor agonist induced contralateral rotation in unilaterally 6-OHDA lesioned rats. The dose of SKF 38393 used to induce contralateral rotation also caused an intense Fos protein immunoreactivity in the rat dorsolateral striatum on the lesioned site which was inhibited by PTAC indicating that the inhibition of rotation by PTAC was not due to non-specific peripheral side effects.
-
Previous imaging studies of pain used a block design of prolonged (up to 1 min) noxious stimulation that are not well tolerated and subject to temporal interactions. We describe an adaptation of event-related fMRI to study pain with short duration stimuli. ⋯ Brief pain-related activations were clearly identified in the cortex and thalamus with a hemodynamic delay of 3-6 s. These findings demonstrate that brief stimuli combined with on-line pain ratings can be used to study pain with fMRI.
-
Activity of calpains and caspase-3 inferred from proteolysis of the cytoskeletal protein alpha-spectrin into signature spectrin breakdown products (SBDPs) was used to provide the first systematic and simultaneous comparison of changes in activity of these two families of cysteine proteases after traumatic brain injury (TBI) in rats. Distinct regional and temporal patterns of calpain/caspase-3 processing of alpha-spectrin were observed in brain regions ipsilateral to the site of injury after TBI, including large increases of 145 kDa calpain-mediated SBDP in cortex (up to 30-fold), and enduring increases (up to 2 weeks) of 145 kDa SBDP in hippocampus and thalamus. By contrast, 120 kDa caspase-3-mediated SBDP was absent in cortex and showed up to a 2-fold increase in hippocampus and striatum at early (hours) after TBI. Future studies will clarify the pathological significance of large regional differences in activation of calpain and caspase-3 proteases after TBI.