Neuroreport
-
The mammalian cochlea receives feedback from the brainstem medial olivocochlear (MOC) efferents, whose putative 'antimasking' function is to adjust cochlear amplification and enhance peripheral signal detection in adverse listening environments. Human studies have been inconsistent in demonstrating a clear connection between this corticofugal system and behavioral speech-in-noise (SIN) listening skills. To elucidate the role of brainstem efferent activity in SIN perception, we measured ear-specific contralateral suppression of transient-evoked otoacoustic emissions (OAEs), a proxy measure of MOC activation linked to auditory learning in noisy environments. ⋯ The rightward bias in contralateral MOC suppression of OAEs, coupled with the stronger association between physiological and perceptual measures, is consistent with left-hemisphere cerebral dominance for speech-language processing. We posit that corticofugal feedback from the left cerebral cortex through descending MOC projections sensitizes the right cochlea to signal-in-noise detection, facilitating figure-ground contrast and improving degraded speech analysis. Our findings demonstrate that SIN listening is at least partly driven by subcortical brain mechanisms; primitive stages of cochlear processing and brainstem MOC modulation of (right) inner ear mechanics play a critical role in dictating SIN understanding.
-
Peripheral nerve functional recovery after injuries relies on both axon regeneration and remyelination. Both axon regeneration and remyelination require intimate interactions between regenerating neurons and their accompanying Schwann cells. Previous studies have shown that motor and sensory neurons are intrinsically different in their regeneration potentials. ⋯ However, remyelination was diverse among myelinated motor and sensory nerve fibers. In detail, Aβ and Aδ fibers incompletely remyelinated in male, but not female rats, whereas Aα fibers fully remyelinated in both sexes. Our result indicated that differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.
-
Intracranial hemorrhages are associated with high rates of disability and mortality. Telemedicine in general provides clinical healthcare at a distance by using videotelephony and teleradiology and is used particularly in acute stroke care medicine (TeleStroke). TeleStroke considerably improves quality of stroke care (for instance, by increasing thrombolysis) and may be valuable for the management of intracranial hemorrhages in rural hospitals and hospitals lacking neurosurgical departments, given that surgical/interventional therapy is only recommended for a subgroup of patients. ⋯ Community hospitals are confronted with patients with intracranial hemorrhage, whose management requires specific neurosurgical and hematological expertise with respect to hemorrhage subtype and clinical presentation. TeleStroke networks help select patients who need advanced neurological and/or neurosurgical care. The relatively low proportion of interhospital transfers shown in this study reflects a differentiated decision process on the basis of both guidelines and standard operating procedures.
-
Feedback-related negativity (FRN) is a negative deflection that appears around 250 ms after the gain or loss of feedback to chosen alternatives in a gambling task in frontocentral regions following outcomes. Few studies have reported FRN enhancement in adolescents compared with adults in a gambling task without probabilistic reinforcement learning, despite the fact that learning from positive or negative consequences is crucial for decision-making during adolescence. Therefore, the aim of the present research was to identify differences in FRN amplitude and latency between adolescents and adults on a gambling task with favorable and unfavorable probabilistic reinforcement learning conditions, in addition to a nonlearning condition with monetary gains and losses. ⋯ Results indicate that both the adolescents and the adults improved their performance in relation to positive and negative feedback. However, the FRN findings suggest an increased sensitivity to external feedback to losses in adolescents compared with adults, irrespective of the presence or absence of probabilistic reinforcement learning. These results reflect processing differences on the neural monitoring system and provide new perspectives on the dynamic development of an adolescent's brain.
-
Early life stress is a risk factor for developing functional pain disorders. The 'limited bedding' (LB) model elicits psychological stress in the dam and her pups by providing minimal nesting material following delivery. Little is known about the effects of LB on visceral pain. ⋯ LB exposure resulted in significant visceral hyperalgesia in both sexes. Sex differences were demonstrated only in nonstressed controls, with females showing a greater visceromotor response. Our results prepare the way for use of the LB model in studying the development of visceral pain in adults with functional gastrointestinal disorders.