Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Review Case Reports
Thrombectomy of Ventricular Assist Device-Originated Embolic Stroke: A Clinical Decision Model.
The use of ventricular assist devices (VADs) for the treatment of heart failure has become increasingly common. These patients have a considerable risk of cerebral embolism. We describe such a patient and his successful treatment by thrombectomy, compare his attributes with those previously published, and describe the construct of a clinical decision model, whose results bear practical implications for patient management. ⋯ In conclusion, thrombectomy appears to be a safe and effective method (and often the only viable one) for urgent treatment of patients with VAD-originated cerebral embolism.
-
Structure-by-structure analysis, in which the brain magnetic resonance imaging (MRI) is parcellated based on its anatomical units, is widely used to investigate chronological changes in morphology or signal intensity during normal development, as well as to identify the alterations seen in various diseases or conditions. The multi-atlas label fusion (MALF) method is considered a highly accurate parcellation approach, and anticipated for clinical application to quantitatively evaluate early developmental processes. However, the current MALF methods, which are designed for neonatal brain segmentations, are not widely available. ⋯ The Web platform by braingps.mricloud.org will eliminate the dependence on a particular operating system (eg, Windows, Macintosh, or Linux) and the requirement for high computational performance of the user's computers. The MALF-based, fully automated, image parcellation could achieve excellent agreement with manual parcellation, and the whole and regional brain volumes quantified through this method demonstrated developmental trajectories comparable to those from a previous publication. This solution will make the latest MALF tools readily available to users, with minimum barriers, and will expedite and accelerate advancements in developmental neuroscience research, neonatology, and pediatric neuroradiology.
-
The brain's stiffness measurements from magnetic resonance elastography (MRE) strongly depend on actuation frequencies, which makes cross-study comparisons challenging. We performed a preliminary study to acquire optimal sets of actuation frequencies to accurately obtain rheological parameters for the whole brain (WB), white matter (WM), and gray matter (GM). ⋯ Optimal sets of actuation frequencies to accurately obtain rheological parameters for WB, WM, and GM were determined from shear moduli measurements obtained via 3-dimensional direct inversion. We believe that our study is a first-step in developing a region-specific multifrequency MRE protocol for the human brain.
-
Brain atrophy accelerates at the age of 60 in healthy individuals (HI) and at disease onset in multiple sclerosis (MS) patients. Whether there is an exacerbating effect of aging superimposed on MS-related brain atrophy is unknown. We estimated the aging effect on lateral ventricular volume (LVV) and whole brain volume (WBV) changes in MS patients. ⋯ Development of brain atrophy manifests progressively in MS patients, and occurs with a different pattern, as compared to aging HI. PLVVC increased across age in HI as compared to MS, while PBVC decreased across ages in both HI and MS.
-
Although the role of wall shear stress (WSS) in the initiation, growth, and rupture of intracranial aneurysms has been well studied, its influence on aneurysm recurrence after endovascular treatment requires further investigation. We aimed to compare WSS at necks of recurrent and nonrecurrent aneurysms. ⋯ Our findings indicate that necks of recurrent aneurysms are exposed to abnormal WSS to a larger extent. Abnormal WSS may serve as a metric to distinguish them from nonrecurrent aneurysms with CFD simulations a priori.