Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Review
Imaging Functional Recovery Following Ischemic Stroke: Clinical and Preclinical fMRI Studies.
Disability and effectiveness of physical therapy are highly variable following ischemic stroke due to different brain regions being affected. Functional magnetic resonance imaging (fMRI) studies of patients in the months and years following stroke have given some insight into how the brain recovers lost functions. Initially, new pathways are recruited to compensate for the lost region, showing as a brighter blood oxygen-level-dependent (BOLD) signal over a larger area during a task than in healthy controls. ⋯ Anesthesia and method of stroke induction are the two main sources of variability in preclinical studies; improvements here can reduce variability and increase the intensity and reproducibility of the BOLD response detected by fMRI. Differences in task or stimulus and differences in analysis method also present a source of variability. This review compares clinical and preclinical fMRI studies of recovery following stroke and focuses on how refinement of preclinical models and MRI methods may obtain more representative fMRI data in relation to human studies.
-
We aimed to evaluate the feasibility of an ultrafast whole head contrast-enhanced MRA (CE-MRA) in morphometric assessment of intracranial aneurysms in comparison to routinely used time-of-flight (TOF)-MRA. ⋯ Described ultrafast high spatial-resolution MRA is superior to routinely used TOF-MRA in assessment of morphometric features of intracranial aneurysms, such as intraluminal thrombosis and aneurysm morphology, and is obtained in a fraction of the time (6 seconds).
-
In this study, we used power analysis to calculate required sample sizes to detect group-level changes in quantitative neuroanatomical estimates derived from MRI scans obtained from multiple imaging centers. Sample size estimates were derived from (i) standardized 3T image acquisition protocols and (ii) nonstandardized clinically acquired images obtained at both 1.5 and 3T as part of the multicenter Human Epilepsy Project. Sample size estimates were compared to assess the benefit of standardizing acquisition protocols. ⋯ The use of standardized protocols yielded up to a five-fold reduction in required sample sizes to detect disease-related neuroanatomical changes, and is particularly beneficial for detecting subtle effects. Standardizing image acquisition protocols across scanners prior to commencing a study is a valuable approach to increase the statistical power of multicenter MRI studies.
-
Extracranial internal carotid artery stenoses (ICASs) may greatly differ with respect to morphological and hemodynamical aspects. The aim of this pilot study was to evaluate the use of multiparametric 3-dimensional (3D) contrast-enhanced ultrasound (3D-CEUS) to comprehensively examine ICAS. ⋯ In this pilot study, bedside multiparametric 3D-CEUS provided reliable estimations of different morphological and hemodynamical aspects of ICAS, thus ideally complementing CDS.
-
Cerebral vasodilatory capacity assessment for risk stratification in patients with extracranial arterial stenosis or occlusion may be useful. We describe a new method that assesses cerebral vasodilatory capacity as part of catheter-based cerebral angiography. ⋯ Selective vasodilatory response to intra-arterial nicardipine in the affected arterial distribution during catheter-based cerebral angiography may provide new data for risk stratification.