Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
To apply and evaluate an intensity-based interpolation technique, enabling segmentation of motion-affected neonatal brain MRI. ⋯ According to qualitative and quantitative assessment, intensity-based interpolation reduced the percentage of discarded scans from 29% to 7%.
-
The utility of perfusion MRI in distinguishing between pilocytic astrocytoma (PA) and medulloblastoma (MB) is unclear. This study aimed to evaluate the diagnostic and prognostic performance of dynamic susceptibility contrast (DSC)-MRI parameters and apparent diffusion coefficient (ADC) values between PA and MB. ⋯ DSC-MRI parameters and ADC values were useful for distinguishing between PA and MB. A lower ADC indicated an unfavorable MB prognosis, but the DSC-MRI parameters did not correlate with progression-free survival in either group.
-
Differentiation of meningiomas, paragangliomas, and schwannomas in the cerebellopontine angle and jugular foramen remains challenging when conventional MRI findings are inconclusive. This study aimed to assess the clinical utility of diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE-MRI) findings for tumor type differentiation and to identify the most significant diagnostic parameters. ⋯ DCE-MRI can provide promising parameters to differentiate meningiomas, paragangliomas, and schwannomas in the cerebellopontine angle and jugular foramen.
-
Ultra-high-field 7.0 Tesla (T) MRI offers substantial gains in signal-to-noise ratio (SNR) over 3T and 1.5T, but for over two decades has remained a research tool, while 3T scanners have achieved widespread clinical use. This much slower translation of 7T relates to daunting technical challenges encountered in ultra-high-field human MR imaging. The recent introduction of United States Food and Drug Administration (FDA)-approved clinical 7T scanners promises to be a watershed for many 7T neuroimaging applications, including epilepsy imaging. ⋯ We describe a tiered epilepsy imaging strategy and protocols designed to optimize 7T value and work around signal intensity variation and signal loss artifacts, which remain significant challenges to full exploitation of 7T clinical value. We describe FDA-approved techniques for mitigating these artifacts and briefly outline techniques currently under development, but not yet FDA approved. Finally, we discuss the major issues in 7T patient safety and toleration, outlining their physical causes and effects on workflow, and provide references to more comprehensive technical reviews for readers seeking greater technical detail.