Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Tuberous sclerosis complex (TSC) is a rare, genetic disease that is associated with multiple manifestations including epilepsy and autism. Self-injurious behaviors (SIBs) also occur in a subset of patients. This study used diffusion tensor imaging (DTI) in children with TSC for quantitative and volumetric analysis of brain regions that have been associated with SIB in other genetic conditions. ⋯ These data support a correlation between lower volumes of the globus pallidus and caudate with SIB in children with TSC.
-
Structure-by-structure analysis, in which the brain magnetic resonance imaging (MRI) is parcellated based on its anatomical units, is widely used to investigate chronological changes in morphology or signal intensity during normal development, as well as to identify the alterations seen in various diseases or conditions. The multi-atlas label fusion (MALF) method is considered a highly accurate parcellation approach, and anticipated for clinical application to quantitatively evaluate early developmental processes. However, the current MALF methods, which are designed for neonatal brain segmentations, are not widely available. ⋯ The Web platform by braingps.mricloud.org will eliminate the dependence on a particular operating system (eg, Windows, Macintosh, or Linux) and the requirement for high computational performance of the user's computers. The MALF-based, fully automated, image parcellation could achieve excellent agreement with manual parcellation, and the whole and regional brain volumes quantified through this method demonstrated developmental trajectories comparable to those from a previous publication. This solution will make the latest MALF tools readily available to users, with minimum barriers, and will expedite and accelerate advancements in developmental neuroscience research, neonatology, and pediatric neuroradiology.
-
Periventricular nodular heterotopias (PNHs) are frequently associated with drug-resistant epilepsy (DRE). Although magnetic resonance imaging (MRI) can define the morphological features of PNHs, still there is a need to assess their metabolic activity in order to provide useful information on epileptogenicity and long-term outcome. To that end, we investigated the ability of 18 F-FDG PET to identify seizure onset zone in order to assess the metabolic activity of the ectopic neurons and to provide prognostic information on the postsurgical outcome. ⋯ In PNHs-related epilepsy, FDG-PET more accurately identifies epileptogenic foci, which aids surgical planning and in postoperative seizure control.
-
Capabilities of CTA for evaluation of intracranial aneurysms treated with the Woven EndoBridge (WEB) system has not been thoroughly studied yet. Our aim is to compare the ability of CTA to that of DSA to depict the occlusion status of aneurysms treated with WEB device and present the level of reproducibility of results from CTA. ⋯ CTA is a reliable and reproducible method to evaluate the aneurysm occlusion status and could be implemented on the follow-up of aneurysms treated with WEB.
-
Deep gray matter (DGM) atrophy has been shown at early stages of multiple sclerosis (MS) and reported as an informative marker of cognitive dysfunction and clinical progression. Therefore, accurate measurement of DGM structure volume is a key priority in MS research. Findings from prior studies have shown that hypointense T1 lesions may impact the accuracy of global brain volume measures; however, literature on the effects of hypointense T1 lesions on DGM structure volumes is sparse. ⋯ Our results suggest that lesion in-painting has a negligible impact on DGM structure volume measurement although some regions are more vulnerable to the impact of lesions than others. Furthermore, manual lesion segmentation/in-painting can be replaced by an automatic segmentation/in-painting process.