Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Identifying a last known well (LKW) time surrogate for acute stroke is vital to increase stroke treatment. Diffusion-weighted imaging (DWI) signal intensity initially increases from onset of stroke but mapping a reliable time course to the signal intensity has not been demonstrated. ⋯ There is good correlation between DWI intensity and minutes from onset to MRI. This suggests a time-dependent DWI intensity response and supports the potential use of DWI intensity measurements to extrapolate an LKW time. Further studies are being pursued to increase both experience and generalizability.
-
Review Case Reports
Thrombectomy of Ventricular Assist Device-Originated Embolic Stroke: A Clinical Decision Model.
The use of ventricular assist devices (VADs) for the treatment of heart failure has become increasingly common. These patients have a considerable risk of cerebral embolism. We describe such a patient and his successful treatment by thrombectomy, compare his attributes with those previously published, and describe the construct of a clinical decision model, whose results bear practical implications for patient management. ⋯ In conclusion, thrombectomy appears to be a safe and effective method (and often the only viable one) for urgent treatment of patients with VAD-originated cerebral embolism.
-
Structure-by-structure analysis, in which the brain magnetic resonance imaging (MRI) is parcellated based on its anatomical units, is widely used to investigate chronological changes in morphology or signal intensity during normal development, as well as to identify the alterations seen in various diseases or conditions. The multi-atlas label fusion (MALF) method is considered a highly accurate parcellation approach, and anticipated for clinical application to quantitatively evaluate early developmental processes. However, the current MALF methods, which are designed for neonatal brain segmentations, are not widely available. ⋯ The Web platform by braingps.mricloud.org will eliminate the dependence on a particular operating system (eg, Windows, Macintosh, or Linux) and the requirement for high computational performance of the user's computers. The MALF-based, fully automated, image parcellation could achieve excellent agreement with manual parcellation, and the whole and regional brain volumes quantified through this method demonstrated developmental trajectories comparable to those from a previous publication. This solution will make the latest MALF tools readily available to users, with minimum barriers, and will expedite and accelerate advancements in developmental neuroscience research, neonatology, and pediatric neuroradiology.
-
The brain's stiffness measurements from magnetic resonance elastography (MRE) strongly depend on actuation frequencies, which makes cross-study comparisons challenging. We performed a preliminary study to acquire optimal sets of actuation frequencies to accurately obtain rheological parameters for the whole brain (WB), white matter (WM), and gray matter (GM). ⋯ Optimal sets of actuation frequencies to accurately obtain rheological parameters for WB, WM, and GM were determined from shear moduli measurements obtained via 3-dimensional direct inversion. We believe that our study is a first-step in developing a region-specific multifrequency MRE protocol for the human brain.
-
Deep gray matter (DGM) atrophy has been shown at early stages of multiple sclerosis (MS) and reported as an informative marker of cognitive dysfunction and clinical progression. Therefore, accurate measurement of DGM structure volume is a key priority in MS research. Findings from prior studies have shown that hypointense T1 lesions may impact the accuracy of global brain volume measures; however, literature on the effects of hypointense T1 lesions on DGM structure volumes is sparse. ⋯ Our results suggest that lesion in-painting has a negligible impact on DGM structure volume measurement although some regions are more vulnerable to the impact of lesions than others. Furthermore, manual lesion segmentation/in-painting can be replaced by an automatic segmentation/in-painting process.