Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Parenchymal hematoma is a dreaded complication of mechanical thrombectomy after acute ischemic stroke. This study evaluated whether blood-brain barrier permeability measurements based on CT perfusion could be used as predictors of parenchymal hematoma after successful recanalization and compared the predictive value of various permeability parameters in patients with acute ischemic stroke. ⋯ Patients with parenchymal hematoma after mechanical thrombectomy had higher blood-brain barrier permeability in hypoperfusion areas. Among blood-brain barrier permeability measurement parameters, rP·S and rE showed better accuracy for parenchymal hematoma prediction.
-
Neurotuberculosis is defined as a tuberculous infection of the meninges, brain parenchyma, vessels, cranial and spinal nerves, spinal cord, skull, and spine that can occur either in a localized or in a diffuse form. It is a heterogeneous disease characterized by many imaging appearances and it has been defined as "the great mimicker" due to similarities with many other conditions. The diagnosis of central nervous system (CNS) tuberculosis (TB) is based on clinical presentation, neuroimaging findings, laboratory and microbiological findings, and comprehensive evaluation of the response to anti-TB drug treatment. ⋯ Familiarity with the imaging characteristics helps in accurate diagnosis and may prevent or limit significantly morbidity and mortality. The goal of this review is to provide a comprehensive up-to-date overview of the conventional and advanced imaging features of CNS TB for radiologists, neuroradiologists, and pediatric radiologists. We discuss the most typical neurotuberculosis imaging findings and their differential diagnosis in children and adults with the goal to provide a global overview of this entity.
-
Hemispatial neglect is characterized by a reduced awareness to stimuli on the contralateral side. Current literature suggesting that damage to the right parietal lobe and attention networks may cause hemispatial neglect is conflicting and can be improved by investigating a connectomic model of the "neglect system" and the anatomical specificity of regions involved in it. ⋯ We provide an anatomically specific connectomic model of the neurobehavioral substrates underlying hemispatial neglect. Our model suggests a fronto-parietal-temporal network linked via the SLF supports the functions impaired in neglect and implicates various higher-order networks which are not limited to the attention networks.
-
Review
Diffusion tensor imaging of the brain in children with sensory processing disorder: A review.
Sensory processing disorder (SPD) is a clinical condition characterized by difficulties in the neurological processes of registering, discriminating, organizing, and responding to various sensory sensations. This study aimed to review the association between impaired white matter (WM) tract structure and neurofunctional deficits in children with SPD using diffusion tensor imaging (DTI). A comprehensive literature search was conducted using the online databases Google Scholar and PubMed (from 2010 to July 2023), resulting in the selection of nine relevant studies. ⋯ Notably, significant correlations were observed between with auditory over-responsivity and TOR with the DTI parameters (positive for FA and negative for RD and MD). Overall, this review confirms the impaired integrity of specific WM tracts in children with SPD and establishes correlations between DTI parameters and neurobehavioral deficits associated with the disorder. The insights gained from this review contribute to a better understanding of SPD and hold clinical implications for its diagnosis and treatment.
-
This study explores the use of deep learning (DL) techniques in MRI of the orbit to enhance imaging. Standard protocols, although detailed, have lengthy acquisition times. We investigate DL-based methods for T2-weighted and T1-weighted, fat-saturated, contrast-enhanced turbo spin echo (TSE) sequences, aiming to improve image quality, reduce acquisition time, minimize artifacts, and enhance diagnostic confidence in orbital imaging. ⋯ The study proved that using DL for MRI image reconstruction in orbital scans significantly cut acquisition time by 69%. This approach also enhanced image quality, reduced image noise, sharpened images, and boosted diagnostic confidence.