Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Spinal nerve root enhancement in pediatric patients is generally nonspecific, and clinical and laboratory correlation is essential. Nerve root enhancement indicates lack of integrity of the blood-nerve barrier. ⋯ Familiarity with the various pathologic entities associated with spinal nerve root enhancement is important for a concise differential diagnosis in the appropriate clinical setting. This will avoid unnecessary additional investigations.
-
MRI is a powerful tool for the diagnosis and management for a variety of central nervous system (CNS) diseases. Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are a novel category of MRI contrast agents that seem to play a crucial role in the imaging of CNS. Due to their physical properties, USPIOs act as blood pool agents. ⋯ The last few years, ferumoxytol has been successfully used to image CNS neoplasms, CNS inflammations and cerebral malformations offering useful information on cellular and molecular level. In addition, ferumoxytol studies focused on the pathophysiology of other CNS disorders like multiple sclerosis and epilepsy are already in progress. Aim of this review article is to provide the potential role of USPIO-enhanced MRI and the latest clinical applications of ferumoxytol agent in CNS imaging.
-
This study investigates the diagnostic value of optic nerve sheath diameter (ONSD) assessed by transorbital sonography for estimation of intracranial pressure (ICP) in patients with aneurysmal subarachnoid hemorrhage (SAH). ⋯ In patients with SAH and acute hydrocephalus after aneurysm rupture, the ONSD remains expanded after normalization of ICP. This is most likely due to an impaired retraction capability of the optic nerve sheath. This finding should be considered when using transorbital sonography in the neuromonitoring of aneurysmal SAH.
-
Examining how left-hemisphere brain tumors might impact both the microstructure of the corpus callosum (CC) as measured by fractional anisotropy (FA) values in diffusion tensor imaging (DTI) as well as cortical language lateralization measured with functional MRI (fMRI). ⋯ Our preliminary observations indicate that the greater FA in CD patients may reflect a more directional microstructure for the CC in this region, suggesting a greater need for interhemispheric transfer of information. Because brain tumors can cause compensatory codominance, our findings may suggest a mechanism by which interhemispheric transfer is facilitated during plasticity in the presence of a tumor.
-
Imaging biomarkers of disease progression are desirable in inherited ataxias. MRI has demonstrated brain damage in Friedreich ataxia (FRDA) in form of regional atrophy of the medulla, peridentate cerebellar white matter (WM) and superior cerebellar peduncles (visible in T1-weighted images) and of change of microstructural characteristics of WM tracts of the brainstem, cerebellar peduncles, cerebellum, and supratentorial structures (visible through diffusion-weighted imaging). We explored the potential of brain MR morphometry and diffusion tensor imaging (DTI) to track the progression of neurodegeneration in FRDA. ⋯ DTI can track brain microstructural changes in FRDA and can be considered a potential biomarker of disease progression.