Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
CT perfusion (CTP) imaging is now widely used to select patients with large vessel occlusions for mechanical thrombectomy. Ghost infarct core (GIC) phenomenon has been coined to describe CTP core overestimation and has been investigated in several retrospective studies. Our aim is to review the frequency, magnitude, and variables associated with this phenomenon. ⋯ CTP ischemic core overestimation appears to be a relatively common phenomenon that is most frequent in patients with poor collaterals imaged within the acute time window. Early perfusion imaging should be interpreted with caution to prevent the inadvertent exclusion of patients from highly effective reperfusion therapies.
-
To comprehensively summarize the radiological characteristics of sinonasal tract angiofibroma (STA) (commonly known as juvenile nasopharyngeal angiofibroma). ⋯ We summarized the MRI findings of STA that can facilitate timely diagnosis and appropriate management.
-
Differentiating multiple sclerosis (MS) from other relapsing inflammatory autoimmune diseases of the central nervous system such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is crucial in clinical practice. The differential diagnosis may be challenging but making the correct ultimate diagnosis is critical, since prognosis and treatments differ, and inappropriate therapy may promote disability. In the last two decades, significant advances have been made in MS, NMOSD, and MOGAD including new diagnostic criteria with better characterization of typical clinical symptoms and suggestive imaging (magnetic resonance imaging [MRI]) lesions. ⋯ Additionally, differences in brain (including the optic nerve) and spinal cord lesion patterns between MS, aquaporin4-antibody-positive NMOSD, and MOGAD have been described. We therefore present a narrative review on the most relevant findings in brain, spinal cord, and optic nerve lesions on conventional MRI for distinguishing adult patients with MS from NMOSD and MOGAD in clinical practice. In this context, cortical and central vein sign lesions, brain and spinal cord lesions characteristic of MS, NMOSD, and MOGAD, optic nerve involvement, role of MRI at follow-up, and new proposed diagnostic criteria to differentiate MS from NMOSD and MOGAD were discussed.
-
Review
Neuroimaging of complications arising after CD19 chimeric antigen receptor T-cell therapy: A review.
Chimeric antigen receptor (CAR) T cells targeting the CD19 (cluster of differentiation 19) cell surface glycoprotein have emerged as a highly effective immunologic therapy in patients with relapsed or refractory B-cell malignancies. The engagement of CAR T cells with CD19 on the surface of neoplastic B cells causes a systemic cytokine release, which can compromise the blood-brain barrier and cause an immune effector cell-associated neurotoxicity syndrome (ICANS). ⋯ Furthermore, other uncommon complications of CD19 CAR T-cell therapy such as posterior reversible encephalopathy syndrome, ocular complications, and opportunistic fungal infections can be catastrophic if not diagnosed in a timely manner, with neuroimaging playing a significant role in management. In this narrative review, we will summarize the current literature on the spectrum of neuroimaging findings in ICANS, list appropriate differential diagnoses, and explore the imaging features of other uncommon central nervous system complications of CD19 CAR T-cell therapy using illustrative cases from two tertiary care institutions.
-
Free-water-corrected diffusion tensor imaging (FW-DTI), a new analysis method for diffusion MRI, can indicate neuroinflammation and degeneration. There is increasing evidence of autoimmune etiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We used FW-DTI and conventional DTI to investigate microstructural brain changes related to autoantibody titers in patients with ME/CFS. ⋯ These results demonstrate the value of using DTI to assess the microstructure of ME/CFS. The abnormalities of right frontal operculum may be a diagnostic marker for ME/CFS.