Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Task-based functional MRI (fMRI) mapping of the motor function prior to epilepsy surgery has limitations in children with epilepsy. We present a data-driven method to automatically delineate the motor cortex using task-free, resting-state fMRI (rsfMRI) data. ⋯ Our results show the sensitivity and reproducibility of an automated motor mapping method based on ICA analysis of rsfMRI in children with epilepsy. The ICA maps may provide different, but useful, information than task fMRI. Future studies will expand our method to mapping other brain functions, and may lead to a surgical planning tool for patients who cannot perform task fMRI and help predict their postsurgical function.
-
Pediatric-onset multiple sclerosis (POMS) shows earlier axonal involvement and greater axonal loss than in adults. We aim to characterize the white matter (WM) microstructural changes in POMS using a diffusion compartment imaging (DCI) model and compare it to standard diffusion tensor imaging (DTI). ⋯ Lesions in POMS can be accurately characterized by a DCI model. Incipient changes in NAWM seen in DCI may not be readily observable by DTI.
-
High-grade glioma (HGG), including glioblastoma, is the most common primary brain neoplasm and has a dismal prognosis. After initial treatment, follow-up decisions are guided by longitudinal MRI performed at routine intervals. The Brain Tumor Reporting and Data System (BT-RADS) is a proposed structured reporting system for posttreatment brain MRIs. The purpose of this study is to determine the relationship between BT-RADS scores and overall survival in HGG patients. ⋯ BT-RADS scores can be used as a reference guide to anticipate whether patients' subsequent MRI will be improved, stable, or worsened. The scoring system can also be used to predict clinical outcomes and prognosis.
-
Treatment of acute ischemic stroke is heavily contingent upon time, as there is a strong relationship between time clock and tissue progression. Work has established imaging biomarker assessments as surrogates for time since stroke (TSS), namely, by comparing signal mismatch between diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) imaging. Our goal was to develop an automatic technique for determining TSS from imaging that does not require subspecialist radiology expertise. ⋯ Our model achieved higher generalization performance on external evaluation datasets than the current state-of-the-art for TSS classification. These results demonstrate the potential of automatic assessment of onset time from imaging without the need for expertly trained radiologists.
-
Sodium imaging shows great potential for the characterization of brain tumors. Intensity correction is required but the additional scan time is costly. Recent developments can halve the time but were optimized in normal brains and may not be applicable in brain tumor imaging. We aim to develop an individualized uniformity correction for sodium imaging optimized for brain tumor patients that reduces scan time but provides high-resolution images for clinical practice. ⋯ The 4 mm birdcage coil image provided the optimal approach for both as a compromise between the time-savings effect and image quality. This method allows for a 2-mm iso-cubic voxel resolution clinical sodium scan within 12 minutes. We also presented prescanned phantom sensitivity map results, which were designed to cover all patient head sizes. This approach provides an alternative solution in more time-sensitive cases.