Hippocampus
-
Low frequency-induced short-term synaptic plasticity was investigated in hippocampal slices with 60-electrode recording array. Remarkably, the application of low-frequency stimulation (1 Hz) for a short duration (3-5 min) resulted in the induction of a slow-onset long-term potentiation (LTP) in the immediate vicinity of the stimulated electrode. This phenomenon was observed exclusively in the CA1 subfield, neither in the CA3 area nor in the dentate gyrus. ⋯ Although mitogen activated protein kinase pathway was stimulated after the application of low frequency, the induction and maintenance of this slow-onset LTP were not dependent on the activation of this intracellular pathway. The direct activation of adenylyl cyclase with forskolin also induced a synaptic enhancement displaying similar features. This new form of LTP could represent the mnesic engram of mild and repetitive stimulation involved in latent learning.
-
Neural activity often becomes rhythmic during mental processing. But there has been no direct proof that rhythmicity, per se, is important for mental function. We assessed this issue in relation to the contribution of hippocampal theta-frequency rhythmicity to learning in the Morris water maze by blocking theta (and other septal inputs to the hippocampus) and then using electrical stimulation to restore rhythmicity. ⋯ The results suggest that the precise frequency of rhythmicity may be important for hippocampal function. Functional rhythmicity needs, therefore, to be included in neural models of cognitive processing. The success of our procedure also suggests that simple alterations of rhythmicity could be used to ameliorate deficits in learning and memory. (c) 2006 Wiley-Liss, Inc.
-
Traumatic brain injury (TBI) is a significant health issue that often causes enduring cognitive deficits, in particular memory dysfunction. The hippocampus, a structure crucial in learning and memory, is frequently damaged during TBI. Since long-term potentiation (LTP) is the leading cellular model underlying learning and memory, this study was undertaken to examine how injury affects area CA1 LTP in mice using lateral fluid percussion injury (FPI). ⋯ This study demonstrates that injury leads to significantly smaller N-methyl-D-aspartate potentials and glutamate-induced excitatory currents, increased dendritic spine size, and decreased expression of alpha-calcium calmodulin kinase II. These findings may underlie the injury-induced lack of LTP and thus, contribute to cognitive impairments often associated with TBI. Furthermore, these results provide attractive sites for potential therapeutic intervention directed toward alleviating the devastating consequences of human TBI.
-
Although most observers agree that the hippocampus has a critical role in learning and memory, there remains considerable debate about the precise functional contribution of the hippocampus to these processes. Two of the most influential accounts hold that the primary function of the hippocampus is to generate cognitive maps and to mediate episodic memory processes. The well-documented spatial firing patterns (place fields) of hippocampal neurons in rodents, along with the spatial learning impairments observed with hippocampal damage support the cognitive mapping hypothesis. ⋯ Since episodic memories, by definition, include information about the time and place where the episode occurred, contextual information is a necessary prerequisite for any episodic memory. Thus, place fields contribute importantly to episodic memory as part of the needed context representations. Additionally, recent findings indicate that hippocampal neurons differentiate contexts at progressively finer levels of detail, suggesting a hierarchical coding scheme which, if combined with temporal information, could provide a means of differentiating memory episodes.
-
It has been proposed that declarative memories can be dependent on both an episodic and a semantic memory system. While the semantic system deals with factual information devoid of reference to its acquisition, the episodic system, characterized by mental time travel, deals with the unique past experience in which an event took place. Episodic memory is characteristically hippocampus-dependent. ⋯ However, when these features are expressed during an animal's behavior, the neuronal activity could merely be categorizing the present situation and could therefore reflect semantic memory rather than episodic memory. We propose that mental time travel is the key feature of episodic memory and that it should take a form, in the awake animal, similar to the replay of behavioral patterns of activity that has been observed in hippocampus during sleep. Using tasks designed to evoke episodic memory, one should be able to see memory reactivation of behaviorally relevant sequences of activity in the awake animal while recording from hippocampus and other cortical structures.